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Abstract

Tara was identified as an interacting partner of guanine nucleotide exchange factor Trio and TRF1. Tara is proposed to be involved in
many important fundamental cellular processes, ranging from actin remodeling, directed cell movement, to cell cycle regulation. Yet, its
exact roles required further elucidation. Here, we identify a novel Tara-binding protein HECTD3, a putative member of HECT E3 ubiq-
uitin ligases. HECTD3 directly binds Tara in vitro and forms a complex with Tara in vivo. Overexpression of HECTD3 enhances the
ubiquitination of Tara in vivo and promotes the turnover of Tara, whereas depletion of HECTD3 by small interfering RNA decreases
Tara degradation. Furthermore, depletion of HECTD3 leads to multipolar spindle formation. All these findings suggest that HECTD3
may facilitate cell cycle progression via regulating ubiquitination and degradation of Tara.
� 2008 Elsevier Inc. All rights reserved.
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The ubiquitin-proteasome system mediates the selective
and time-dependent degradation of short-lived regulatory
proteins, which are involved in a lot of critical cellular
functions such as cell cycle progression, antigen presenta-
tion, transcriptional regulation, the induction of the
inflammatory response, and apoptosis [1–4]. Protein degra-
dation via this system occurs by two distinct and successive
steps. Initially, target proteins are conjugated to the poly-
peptide ubiquitin through a multi-step reaction which is
catalyzed by the sequential activity of ubiquitin-activating
enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiq-
uitin ligase (E3); in the second step, the ubiquitin-conju-
gated proteins are recognized and degraded by
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proteasome. In the ubiquitin-proteasome system, the selec-
tivity of substrate appears to be determined through the
interaction between specific E3s and substrates [5]. Among
the known ubiquitin ligases, HECT (homologous to E6-AP
carboxyl terminus) E3 ubiquitin ligases are unique in that
they participate directly in the chemistry of substrate ubiq-
uitination reactions. All HECT E3 ligases contain a con-
served C-terminal HECT domain which is homologous to
the C-terminus of E6-AP [6] and a highly variable N-termi-
nal domain which is responsible for substrate recognizing
and binding [7].

Tara (Trio-associated repeat on actin) was originally
identified as a Trio-binding protein [8]. Trio is a Dbl-
homology guanine nucleotide exchange factor that
regulates actin cytoskeletal reorganization, cell motility
and cell growth [9]. Trio-deficiency causes mouse embry-
onic lethality associated with abnormal skeletal muscle
and neural tissue development [10]. Interacting with Trio,
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Tara is also implicated in regulating actin cytoskeletal
organization. Ectopic expression of Tara alters actin
cytoskeletal organization, promotes cell spreading, and
enhances F-actin stability. Aside from interacting with
Trio, our recent study showed that Tara also binds to
TRF1 [11]. Considering the roles of TRF1 in telomere
length control, telomeric ends shelter and cell cycle regu-
lation [12–19], Tara may participate in telomere mainte-
nance and/or mitotic regulation through interacting
with TRF1.

Here, we performed a yeast two-hybrid screen and iden-
tified a novel Tara-binding protein HECTD3 (HECT
domain-containing protein 3). Our studies show that
HECTD3 interacts with Tara in vitro and in vivo. Overex-
pression of HECTD3 promotes the ubiquitination of Tara
and accelerates the proteasomal degradation of Tara
in vivo, wheras inhibition of HECTD3 increases Tara sta-
bility. Furthermore, depletion of HECTD3 leads to multi-
polar spindle formation. All these findings suggest that
HECTD3 is an E3 ubiquitin ligase specifically recognizing
Tara and facilitates mitotic progression by mediating deg-
radation of Tara.
Materials and methods

Reagents. Anti-Tara polyclonal antibody was generated as described
previously [20]. Other antibodies and reagents used in this study were as
follows: mouse monoclonal anti-hemagglutinin (HA) antibody (Cell Sig-
naling, Beverly, MA), mouse monoclonal anti-GFP antibody (BD Bio-
sciences, San Diego, CA), rabbit monoclonal anti-MBP antibody (New
England Biolabs Inc., Ipswich, MA), mouse monoclonal anti-FLAG
antibody conjugated with horseradish peroxidase (HRP), mouse mono-
clonal anti-a-tubulin antibody, MG132, and Cycloheximide (CHX)
(Sigma, St. Louis, MO), FITC-conjugated goat anti-mouse IgG and
Rhodamine-conjugated goat anti-rabbit IgG (Jackson ImmunoResearch,
West Grove, PA).

Constructs. The cDNA encoding full-length human Tara [11] was
constructed into pGBKT7, pEGFP-N1, p3XFLAG-myc-CMV-24 (Flag),
and pET-22b(+) vectors. Full-length HECTD3 (GenBank Accession No.
NM_024602) cDNA was purchased from OriGene (Rockville, MD) and
then cloned into pGADT7, pEGFP-N3, p3XFLAG-myc-CMV-24, and
pMal-C2 vectors. Flag-HECTD3 C539A mutant was prepared by PCR
amplification method using two specific mutation primers (50-AGTG
GAAGACTCGGGCAGCG-30 and 50-GCCTCCAGCACCCTCTTC
CTG-30). All plasmid constructs were sequenced for verification.

Yeast two-hybrid. The yeast two-hybrid screen was carried out as
described previously [21,22]. Interaction was verified by retransforming
the candidate cDNAs including the full-length of HECTD3 back into
AH109 yeast strain along with pGBKT7-Tara.

Recombinant protein. Expression and purification of recombinant His-
Tara was carried out as described previously [20]. MBP (Maltose Binding
Protein) and MBP-HECTD3 were expressed and purified by using amy-
lose resin (New England Biolabs Inc., Ipswich, MA) according to the
manufacturer’s instructions.

Pull-down assay. His-Tara was purified and conjugated to Ni-NTA
agarose beads (Qiagen, Valencia, CA). Purified MBP-HECTD3 or MBP
was incubated with His-Tara conjugated Ni-NTA agarose beads at 4 �C
for 2 h. Resultant agarose beads were washed three times with pre-cooled
buffer (20 mM Tris–HCl, pH 7.4, 100 mM NaCl, 1 mM EDTA) plus 1%
Triton X-100 and three times with PBS. Proteins bound by agarose beads
were fixed in Laemmli loading buffer, subjected to 10% SDS–PAGE,
transferred to nitrocellulose membrane, probed with MBP monoclonal
antibody, and finally developed with an ECL kit.
Cell culture and transfection. HeLa and 293T cells were cultured as
described previously [22]. The transient transfection of plasmids and
siRNA were performed by LipofectamineTM 2000 or OligofectamineTM

reagent (Invitrogen, Carlsbad, CA), respectively, according to the manu-
facturer’s recommendations.

Co-immunoprecipitation. For co-immunoprecipitation experiment,
Flag-HECTD3 was co-transfected with GFP-Tara or GFP vector into
293T cells using calcium phosphate protocol. Thirty-six hours after
transfection, cells were harvested and subjected to immunoprecipitation
with anti-FLAG M2 affinity gel (Sigma, St. Louis, MO) as described
previously [22].

Small interfering RNA (siRNA). For the siRNA studies, the siRNA
duplex against HECTD3 was synthesized by Qiagen (Valencia, CA; Cat.
No. SI00399336). As a control, either a duplex targeting cyclophilin or
scramble sequence was used. After trial experiments using a series of
concentrations and time course assays, treatment at 200 nM for 48 h was
finally selected as the most efficient conditions for repressing HECTD3
protein.

Immunofluorescence. HeLa cells were grown on acid-treated glass
coverslips. After siRNA transfection, immunofluorescence was carried out
as described previously [23]. Slides were examined with a Zeiss Axiovert-
200 fluorescence microscope, and images were collected and analyzed with
Image-5 (Carl Zeiss, Germany). All images were processed with Adobe
Photoshop 7.0 software.

Results

HECTD3 is a novel interactor of Tara

To identify interacting proteins of Tara, we conducted a
yeast two-hybrid screen with Tara as a bait. Among the
positive clones, we got a novel Tara-interacting protein
encoding the N-terminal 75 amino acids of HECTD3, a
putative E3 containing the HECT domain. To verify the
interaction between HECTD3 and Tara, we cloned the
full-length HECTD3 cDNA into pGADT7 vector and
co-transformed AH109 yeast strain with pGADT7-
HECTD3 and pGBKT7-Tara. As shown in Fig. 1A, the
co-transformation assay confirmed HECTD3 interacts
with Tara based in the yeast two-hybrid assay.

To validate the interaction between HECTD3 and Tara
observed in our yeast two-hybrid assay, we carried out a
pull-down assay to examine whether HECTD3 directly
binds Tara in vitro. We expressed and purified MBP-
HECTD3 and tested its ability to bind His-Tara that was
conjugated to Ni-NTA agarose beads. As shown in
Fig. 1B, His-Tara pulled down MBP-HECTD3 but not
MBP. Therefore, the interaction between HECTD3 and
Tara is physically direct.

To further confirm the interaction between HECTD3
and Tara, we performed co-immunoprecipitation experi-
ments to test whether HECTD3 forms a complex with
Tara in vivo. To this end, 293T cells were co-transfected
with Flag-HECTD3 and GFP-Tara or GFP vector and
then subjected to immunoprecipitation with anti-FLAG
M2 affinity gel. Immunoblotting with GFP antibody
showed that Tara is co-precipitated with HECTD3
(Fig. 1C). No GFP was recovered in the Flag immuno-
precipitates, suggesting that the interaction between
HECTD3 and Tara is specific and independent of the
GFP tag.
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Fig. 1. Interaction of HECTD3 with Tara protein. (A) Interaction of HECTD3 with Tara in yeast. AH109 cells were co-transformed with indicated
plasmids and then selected on supplemented minimal plates lacking tryptophan, leucine, histidine, and adenine. The interaction between HECTD3 and
Tara was revealed through staining for b-galactosidase activity with X-a-Gal. (B) Direct physical interaction of HECTD3 with Tara determined by pull-
down assay. His-Tara conjugated Ni-NTA agarose beads was used as affinity matrixes to absorb purified MBP-HECTD3 or MBP alone. Bound proteins
were detected by immunoblotting analysis with MBP antibody. CB, Coomassie blue. (C) Co-immunoprecipitation of exogenously expressed HECTD3 and
Tara. 293T cells were co-transfected with Flag-HECTD3/GFP-Tara or Flag-HECTD3/GFP and then subjected to immunoprecipitation with anti-FLAG
M2 affinity gel, followed by immunoblotting analysis with GFP and Flag antibody.
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HECTD3 promotes Tara ubiquitination in vivo

Our studies above demonstrated that HECTD3 inter-
acts with Tara in vitro and in vivo. Given that the function
of HECT E3 ligases is to target specific substrates for pro-
teasomal degradation, we hypothesized that HECTD3 spe-
cifically recognize and ubiquitinate Tara, and thus target it
for proteasome-mediated degradation.

To confirm this hypothesis, we first carried out in vivo

ubquitination assay to determine whether Tara is ubiquiti-
nated in vivo. 293T cells were co-transfected with Flag-Tara
and HA-ubiquitin, lysed under denaturing conditions, and
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then immunoprecipitated with anti-FLAG M2 affinity gel.
Next, immunoblotting with FLAG and HA antibodies was
performed to detect ubiquitinated Tara. As shown in
Fig. 2A, overexpressed Tara was ubiquitinated in vivo

and treatment of cells with the proteasome inhibitor
MG132 caused a robust increase in Tara ubiquitination,
suggesting that ubiquitinated Tara is a substrate for pro-
teasome. No ubiquitinated Tara was detected in the
absence of Flag-Tara, indicating the specificity of the
in vivo ubiquitination assay.

Subsequently, we tested the effect of HECTD3 on Tara
ubiquitination in vivo. 293T cells were co-transfected with
Flag-Tara and HA-ubiquitin in the presence or absence
of GFP-HECTD3. As expected, overexpression of
HECTD3 caused an increase in Tara ubiquitination, and
the Tara ubiquitination was further enhanced by MG132
treatment (Fig. 2B). These results indicated that HECTD3
can ubiquitinate Tara and thereby target it for proteasomal
degradation.

Regulation of Tara degradation by HECTD3 in vivo

To further confirm our hypothesis that HECTD3 can
specifically ubiquitinate Tara and target it for proteasomal
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Fig. 3. Regulation of Tara degradation by HECTD3 in vivo. (A) Overexpression of HECTD3 decreases Tara protein level in a dose-dependent manner. A
fixed amount of GFP-Tara and variant amounts of Flag-HECTD3 were co-transfected into HeLa cells as indicated followed by immunoblotting analysis
with GFP antibody to detect Tara protein levels. The mid panel shows expression of HECTD3. The a-tubulin was used as the loading control. (B)
Efficiency of HECTD3 siRNA treatment in HeLa cells. Aliquots of HeLa cells expressing Flag-HECTD3 were transfected with 200 nM siRNA
oligonucleotide duplexes for HECTD3 or control (scrambled oligonucleotide) for 48 h and followed by immunoblotting analysis with FLAG antibody
(upper panel) and a-tubulin antibody (lower panel). The analyses indicate the efficiency of the Flag-HECTD3 protein suppression. (C) Inhibition of
HECTD3 increases Tara protein level. HeLa cells were transfected with oligonucleotides (control or siRNA for HECTD3) and GFP-Tara. Forty-eight
hours later the cells were harvested and followed by immunoblotting analysis with GFP antibody to detect Tara protein levels. The a-tubulin was used as
the loading control. (D) Overexpression of HECTD3 reduces the half-life of Tara. GFP-Tara was co-transfected with p3XFLAG-myc-CMV-24 vector or
Flag-HECTD3 into HeLa cells. Twenty-four hours later, the cells were treated with cycloheximide (50 lg/ml) and harvested at indicated time points. The
expression levels of GFP-Tara were determined by immunoblotting analysis with GFP antibody. The mid panel shows expression of HECTD3. The a-
tubulin was used as the loading control. (E) Depletion of HECTD3 increases the half-life of Tara. HeLa cells were transfected with oligonucleotides
(control or siRNA for HECTD3) and GFP-Tara. Forty-eight hours later, the cells were treated with cycloheximide (50 lg/ml) and harvested at indicated
time points. The expression levels of GFP-Tara were determined by immunoblotting analysis with GFP antibody. The a-tubulin was used as the loading
control. (F) Overexpression of HECTD3 but not HECTD3 C539A causes a decrease of Tara protein level. HeLa cells were co-transfected with GFP-Tara
plus either p3XFLAG-myc-CMV-24 vector, Flag-HECTD3 or Flag-HECTD3 C539A. Twenty-four hours later, the cells were treated with or without
25 lM MG132 for another 12 h. The expression levels of GFP-Tara were determined by immunoblotting analysis. The mid panel shows expression of
HECTD3 or HECTD3 C539A. The a-tubulin was used as the loading control.
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The effect of HECTD3 on Tara stability depends on its E3

ligase activity

Previous studies showed that there is a conserved cys-
teine located 32–34 amino acids from the carboxyl end of
the HECT domain. This cysteine serves as the site for ubiq-
uitin transfer from E2 to the protein substrate via a trans-
thiolation reaction catalyzed by the HECT E3 ligases [24].
According to the alignment of C-terminal sequences of var-
ious HECT domains of HECT E3 ligases and HECTD3
(Supplementary data, Fig. S1), we chose Cys539 as a muta-
tion residue and constructed HECTD3 C539A mutant to
test whether the effect of HECTD3 on Tara stability
depends on its E3 ligase activity. We co-transfected HeLa
cells with GFP-Tara plus either p3XFLAG-myc-CMV-24
vector, Flag-HECTD3 or Flag-HECTD3 C539A. As
shown in Fig. 3F, in the absence of MG132, the protein
level of Tara significantly decreased in cells expressing
Flag-HECTD3, when compared with cells expressing Flag
control or Flag-HECTD3 C539A. In the presence of
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MG132, however, the levels of Tara became comparable in
all cells. All the results implied that HECTD3 targets Tara
for proteasomal degradation and this function depends on
its E3 ligases activity.
Depletion of HECTD3 leads to multipolar spindle formation

Our recent discoveries that depletion of Tara results in
multipolar spindle formation (manuscript in preparation)
indicate that Tara may function in bipolar spindle forma-
tion and/or centrosomal stability. Given our results that
HECTD3 targets Tara for proteasomal degradation, we
hypothesized that HECTD3 may also be involved in mito-
tic regulation through mediating degradation of Tara. To
confirm this, we transfected HeLa cells with siRNA for
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Consistent with our hypothesis, inhibition of HECTD3
leads to multipolar spindle formation (Fig. 4A and B).
These results suggested that HECTD3 may provide a
potential mechanism by which Tara protein function is reg-
ulated so as to facilitate cell cycle progression.
Discussion

Our previous studies demonstrated that Tara is a cell-
cycle regulated protein and degraded through the ubiqui-
tin-proteasome pathway (manuscript in preparation), but
the exact mechanism remains unclear. Here, we report
HECTD3, a putative E3 containing the HECT domain,
is a novel interacting partner of Tara. HECTD3 directly
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binds Tara in vitro and forms a complex with Tara in vivo.
Further studies show that HECTD3 overexpression
enhances the ubiquitination of Tara and decreases Tara
stability in vivo, whereas depletion of HECTD3 increases
Tara stability. Moreover, the effect of HECTD3 on Tara
stability depends on its E3 ligase activity. Together, these
findings suggest that HECTD3 can specifically ubiquitinate
Tara and target it for proteasomal degradation.

In addition to Trio, Tara is a novel TRF1 interacting
protein. TRF1 functions as a key molecule in connecting
telomere maintenance and cell cycle control. Pin2/TRF1
translocates to centrosome upon the onset of mitosis
[17,18]. Overexpression of TRF1 induces mitotic entry
and apoptosis in cells with short telomeres [19]. Our
recent studies showed that Tara traffics toward centro-
some immediately upon nuclear envelope fragmentation
and specifies the centrosomal localization of TRF1.
Depletion of Tara results in multipolar spindle formation
(manuscript in preparation). All these findings suggest
that Tara may be involved in mitotic regulation through
interacting with TRF1. Many centrosomal proteins are
regulated in a cell-cycle dependent fashion, and the highly
ordered cell cycle progression can be achieved by control-
ling the periodic expression and degradation of these cen-
trosomal proteins [25–28]. Here, we show that HECTD3
targets Tara for proteasomal degradation and depletion
of HECTD3 leads to multipolar spindle formation, indi-
cating that HECTD3 may facilitate cell cycle progression
by regulating the turnover of Tara. The exact mechanism
underlying the spindle multipolarity induced by depletion
of HECTD3 is not clear. Maybe the increase of Tara pro-
tein level by depletion of HECTD3 affects the localization
of some proteins to the centrosome and leads to multipo-
lar spindle formation.

Taken together, our studies demonstrate a critical role
of HECTD3 in regulating cell cycle progression via con-
trolling Tara’s turnover.
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