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In eukaryotes, hundreds of protein kinases (PKs) specifi-
cally and precisely modify thousands of substrates at
specific amino acid residues to faithfully orchestrate nu-
merous biological processes, and reversibly determine
the cellular dynamics and plasticity. Although over
100,000 phosphorylation sites (p-sites) have been experi-
mentally identified from phosphoproteomic studies, the
regulatory PKs for most of these sites still remain to be
characterized. Here, we present a novel software pack-
age of iGPS for the prediction of in vivo site-specific
kinase-substrate relations mainly from the phosphopro-
teomic data. By critical evaluations and comparisons, the
performance of iGPS is satisfying and better than other
existed tools. Based on the prediction results, we mod-
eled protein phosphorylation networks and observed that
the eukaryotic phospho-regulation is poorly conserved at
the site and substrate levels. With an integrative proce-
dure, we conducted a large-scale phosphorylation analy-
sis of human liver and experimentally identified 9719 p-
sites in 2998 proteins. Using iGPS, we predicted a human
liver protein phosphorylation networks containing 12,819
potential site-specific kinase-substrate relations among
350 PKs and 962 substrates for 2633 p-sites. Further sta-
tistical analysis and comparison revealed that 127 PKs
significantly modify more or fewer p-sites in the liver pro-
tein phosphorylation networks against the whole human
protein phosphorylation network. The largest data set of
the human liver phosphoproteome together with compu-
tational analyses can be useful for further experimental
consideration. This work contributes to the understanding
of phosphorylation mechanisms at the systemic level, and

provides a powerful methodology for the general analysis
of in vivo post-translational modifications regulating
sub-proteomes. Molecular & Cellular Proteomics 11:
10.1074/mcp.M111.012625, 1070–1083, 2012.

Protein kinase (PK)1-catalyzed phosphorylation is one of
the most important and ubiquitous post-translational modifi-
cations (PTMs) of proteins. This process temporally and spa-
tially modifies �30% of all cellular proteins and plays a crucial
role in regulating a variety of biological processes such as
signal transduction and the cell cycle (1–3). The human ge-
nome encodes 518 PK genes (�2% of the genome), with
different PKs showing distinct recognition specificities; each
PK modifies only a limited subset of substrates, thereby guar-
anteeing the fidelity of cell signaling (1–3). It is accepted that
short linear motifs (SLMs) around the phosphorylation sites
(p-sites) provide primary specificity (2, 4–6), and a variety of
additional contextual factors, including co-localization, co-
expression, co-complex, and physical interaction of the PKs
with their targets, contribute additional specificity in vivo (7–
10). Aberrances of PKs or key substrates disrupt normal func-
tion, rewire signaling pathways, and are implicated in various
diseases and cancers (3, 11). In this regard, the identification
of kinase-specific p-sites and the systematic elucidation of
site-specific kinase-substrate relations (ssKSRs) would pro-
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1 The abbreviations used are: PK, protein kinase; PTM, post-trans-
lational modification; SLM, short linear motif; p-site, phosphorylation
site; ssKSR, site-specific kinase-substrate relation; KSR, kinase-sub-
strate relation; HTP-MS, high-throughput mass spectrometry; GPS,
group-based prediction system; HPN, human phosphorylation net-
work; iGPS, GPS algorithm with the interaction filter, or in vivo GPS;
PPI, protein-protein interaction; PPN, protein phosphorylation net-
work; RP-RPLC, reversed-phase-reversed-phase liquid chromatog-
raphy; P, positive control; N, negative control; Sn, sensitivity; Sp,
specificity; Ac, accuracy; MCC, Mathew correlation coefficient; Kpr,
kinase precision; Lpr, large-scale precision; FPR, false positive rate;
FDR, false discovery rate; STK, serine/threonine kinase; TK, tyrosine
kinase; KTF, kiss-then-farewell; No PPI, without PPI; Exp. PPI, exper-
imental PPI; KOW, Kyprides, Ouzounis, Woese; PAF, polymerase-
associated factor; CTD, C-terminal repeat domain; HLPP, Human
Liver Proteome Project; MPSS, massively parallel signature sequenc-
ing; CNHLPP, Chinese human liver proteome project; pS, phospho-
serine; pT, phosphothreonine; pY, phosphotyrosine.
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vide a fundamental basis for understanding cell plasticity and
dynamics and for dissecting the molecular mechanisms of
various diseases, whereas the ultimate progress could sug-
gest potential drug targets for future biomedical design
(8–10).

Conventional experimental identification of ssKSRs, per-
formed in a one-by-one manner, is labor-intensive, time-con-
suming and expensive. There are only 3508 known kinase-
specific p-sites in the 1390 proteins collected in the
Phospho.ELM 8.2 database (released in April 2009) (12). In
2005, Ptacek et al. detected more than 4000 in vitro kinase-
substrate relations (KSRs) in Saccharomyces cerevisiae using
protein chip technology, although the exact p-sites were not
determined (13). Recently, rapid advances in phosphopro-
teomics have provided a great opportunity to systematically
assess phosphorylation (1, 14–21). State-of-the-art high-
throughput mass spectrometry (HTP-MS) techniques have
the ability to detect thousands of p-sites in cells or tissues in
a single experiment (1, 14, 16, 22). We have collected 145,646
eukaryotic p-sites, primarily from these large-scale assays
(supplemental Table S1); the regulatory PKs for 97.6% of
these sites remain to be characterized.

Alternatively, the in silico prediction of ssKSRs can generate
useful information for subsequent experimental manipulation.
In 2001, Yaffe et al. developed the SLM-based software Scan-
site for the prediction of ssKSRs directly from protein primary
sequences (7). Later, the strategy was employed in a variety of
kinase-specific predictors (23), including our group-based
prediction system (GPS) program (24). These tools may guar-
antee partially correct predictions for in vitro phosphorylation,
but they are far from being adequate for in vivo hits because
the contributions of various contextual factors cannot be ne-
glected. To address this problem, Linding et al. developed a
predictor of NetworKIN by combining an SLM-based ap-
proach with network contextual information to predict in vivo
ssKSRs, and a potential in vivo human phosphorylation net-
work (HPN) was modeled by annotating the phosphopro-
teomic data (8, 9).

In this work, we developed a software package of iGPS
(GPS algorithm with the interaction filter, or in vivo GPS)
mainly for the prediction of in vivo ssKSRs.Eukaryotic PKs
were classified into a hierarchy with four levels: group, family,
subfamily, and single PK (3). Based on the hypothesis that
similar PKs recognize similar SLMs, we selected a predictor in
GPS 2.0 (24) for each PK and directly predicted the potential
PKs for the un-annotated p-sites from the phosphoproteomic
studies. Consequently, protein–protein interaction (PPI) infor-
mation was used as the major contextual factor to reduce
over 95% potentially false-positive hits. The performance of
iGPS was shown by critical evaluations and comparisons to
be promising for the accurate prediction of in vivo ssKSRs.
Based on the prediction results of iGPS, we modeled eukary-
otic protein phosphorylation networks (PPNs) and observed
that phosphorylation regulation changes dramatically over the

course of evolution, with poor conservation at both the site
and substrate levels. This observation is consistent with pre-
vious studies (17, 25). Furthermore, we combined a new mul-
tidimensional separation approach using reversed-phase-re-
versed-phase liquid chromatography (RP-RPLC) (22), with
HTP-MS and a new data process platform of ArMone (26) to
conduct a large-scale phosphorylation analysis of the human
liver. Totally, 9719 p-sites of 2998 substrates were identified
from 10,644 non-redundant phosphopeptides. The potential
ssKSRs were predicted for the human liver phosphopro-
teome, whereas further statistical analysis suggested that 60
and 67 PKs preferentially regulate more or fewer p-sites in the
human liver PPN (p value�0.01). A number of results are
consistent with previous observations, whereas other predic-
tions can be useful for further experimental manipulation.

EXPERIMENTAL PROCEDURES

Collection of Known p-sites—The experimentally identified p-sites
were taken from several major databases, including PhosphoPep v2.0
(27), Phospho.ELM 8.3 (released in April 2010) (12, 28), SysPTM 1.1
(29), PhosphoSitePlus (30), and HPRD 9.0 (31). We also collected
thousands of p-sites from several published articles (14, 17–21). The
organism-specific information was distinguished from the database
or data set comments. All p-sites with their protein sequences were
mapped to the UniProt benchmark sequences (More details in sup-
plemental Experimental Procedures). In total, the final phosphoryla-
tion data set contains 145,646 p-sites in 28,457 substrates, with
14,534, 5555, 15,622, 49,119, and 60,816 p-sites in S. cerevisiae, C.
elegans, D. melanogaster, M. musculus, and H. sapiens, respectively
(supplemental Table S1).

To evaluate the prediction performance of iGPS, we took 3508
experimentally verified kinase-specific p-sites in 1,390 proteins from
Phospho.ELM 8.2 (12, 28) as the positive control (P) (supplemental
Table S2), whereas all other Ser/Thr or Tyr residues in the same
substrates were regarded as the negative control (N). Thus:

P � TP � FN (Eq. 1)

N � TN � FP (Eq. 2)

To compare iGPS with NetworKIN (8, 9), we collected 1701 kinase-
specific p-sites in 830 substrates from Phospho.ELM 9.0 (released in
September 2010) (12, 28) for twelve PK groups in iGPS, including
AGC/AKT, AGC/PKA, Atypical/PIKK/ATM, CAMK/CAMK2, CMGC/
CDK/CDC2, CMGC/MAPK, Other/AUR/AUR-A, Other/CK2, TK/ABL,
TK/EGFR, TK/Src, and TK/Syk. Additionally, we manually collected
450 phosphoproteins with 1193 kinase-specific p-sites from the sci-
entific literature. After redundant clearing, the testing data set con-
tains 2894 kinase-specific p-sites in 1280 proteins (Table I, supple-
mental Table S3).

Performance Evaluation—As previously described (24), four stan-
dard measurements, including sensitivity (Sn), specificity (Sp), accu-
racy (Ac), and Mathew correlation coefficient (MCC) were defined as
below:

Sn �
TP

TP � FN
(Eq. 3)

Sp �
TN

TN � FP
(Eq. 4)
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Ac �
TP � TN

TP � FP � TN � FN (Eq. 5)

MCC �
�TP � TN� � �FN � FP�

��TP � FN� � �TN � FP� � �TP � FP� � �TN � FN�

(Eq. 6)

To evaluate the proportion of correct hits among the total predicted
PKs, we defined the kinase precision (Kpr). Given m real p-sites, if we
predict Yi PKs for the i site, with Xi being the experimentally verified
PKs, the Kpr is defined as:

Kpr �

�
i � 1

m

Xi

�
i � 1

m

Yi (Eq. 7)

As previously described (24), we adopted large-scale precision
(Lpr) to estimate the proportion of correct hits from the large-scale
prediction of the PK information. Given n potential p-sites, suppose
that p positive hits are phosphorylated by a PK or PK cluster under a
certain threshold with a calculated false positive rate (FPR) value.
Then the theoretically maximal false positive hits will be n * FPR, if all
of the n site are real negative sites. Thus, the minimal proportion of
correct predictions can be calculated as:

Lpr �
p � n � FPR

p
(Eq. 8)

Furthermore, the above equation was extended to estimate the
average precision for a large data set prediction. Given n potential
p-sites, suppose that we predict p1, p2, …, and pk positive hits for k
PKs, respectively, the theoretically maximal false positive hits for each
PK will be n * FPRj (j � 1, 2, …, k). Then the total precision can be
calculated as:

Lpr �

�
i � 1

k

pi � �
j � 1

k

�n � FPRj�

�
i � 1

k

pi

(Eq. 9)

Although the Lpr does underestimate the accuracy of large-scale
predictions, nevertheless, it still showed the power and utility of the
iGPS algorithm.

Liver Sample Preparation and Phosphopeptide Enrichment—The
study was approved by the Institutional Review Board of Eastern
Hepatobiliary Surgery Hospital (Shanghai, China). Informed consent
was obtained from patients enrolled in this study. The human liver
tissues are the non-tumor liver tissues �2 cm outside the hepatic
hemangiomas removed by surgical operation. The liver tissues have
been checked by histopathological examination to exclude the pres-
ence of invading or microscopic metastatic tumor cells.

As previously described (15), human liver tissues were lysated in 20
ml ice-cold homogenization buffer consisting of 8 M urea, 1% Triton
X-100 v/v, 65 mM DTT, 1 mM EDTA, 0.5 mM EGTA, 1 mM PMSF, 200
�l protease inhibitor mixture (Sigma), phosphatase inhibitors (1 mM

sodium fluoride, 1 mM sodium orthovanadate, 1 mM �-glycerophos-
phate, 10 mM sodium pyrophosphate), and 40 mM Tris-HCl at pH 7.4.
After being resuspended in the denaturing buffer containing 8 M urea
and 50 mM Tris-HCl (pH 8.2), the proteins were reduced by DTT at
37 °C for 2 h and alkylated by iodoacetamide in the dark at room
temperature for 40 min. Then the solutions were diluted to 1 M urea
with 50 mM Tris-HCl and trypsin was added, with the weight ratio of
trypsin to protein at 1/25, and incubated at 37 °C overnight. All of the
resulting peptide solution was stored under �80 °C.

The phosphopeptides were enriched from the digest of human liver
lysate by Ti4�-IMAC microspheres (16). Briefly, peptide mixtures
which were first incubated with the Ti4�-IMAC microsphere suspen-
sion (10 mg ml�1 in 80% ACN, 0.1% TFA) for 30 min then were
washed with a solution containing 50% ACN, 6% TFA and 200 mM

NaCl, followed by washing with 30% ACN/0.1% TFA. Finally, the
enriched phosphopeptides were eluted with 10% NH3�H2O and dried
by vacuum centrifugation.

Multidimensional Separation of Phosphopeptides and Mass Spec-
trometry Analysis—The enriched phosphopeptides were redissolved
in mobile phase A (25 mM ammonium formate (NH4FA) aqueous
buffer, pH 7.5) and then were loaded onto the first dimensional
separation column (250 mm � 4.6 mm I. D. column packed with 5 �m
Hypersil GOLD aQ C18, Thermo). Mobile phase B was 25 mM NH4FA
in water/acetonitrile (1: 9) and the gradient elution was performed with
0%–10% B (0–80 min) and 10%–35% B (80–90 min). A total of 90
fractions (one fraction per each minute) from the first dimensional
separation were collected and then divided into two groups: an early
group (fractions 1–45) and later group (fractions 46–90). Then every
two fractions with an equal time interval (fractions 1 and 46, 2 and 47,
and so on) were mixed as described previously (22). Finally, half the

TABLE I
A testing data set to compare iGPS with NetworKIN (8, 9) for twelve PK groups

PK clusters
Phospho.ELM 9.0 New dataa Total

Sub.b Sites Sub. Sites Sub. Sites

AGC/AKT 64 90 55 90 119 180
AGC/PKA 242 385 12 25 254 410
Atypical/PIKK/ATM 29 58 19 35 48 93
CAMK/CAMK2 57 91 50 97 107 188
CMGC/CDK/CDC2 84 147 40 138 124 285
CMGC/MAPK 172 300 91 202 263 502
Other/AUR/AUR-A 13 29 22 26 35 55
Other/CK2 164 321 70 153 234 474
TK/ABL 36 51 20 39 56 90
TK/EGFR 23 55 5 19 28 74
TK/Src 98 156 42 86 140 242
TK/Syk 27 64 14 32 41 96
Total 830 1,701 450 1,193 1280 2,894

a The new data set was collected from the scientific literature.
b Sub., number of phosphorylated substrates.
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total number of 45 fractions were lyophilized and submitted to the
second dimensional RP-RPLC separation.

The HPLC system consisted of a degasser and a quaternary sur-
veyor MS pump (Thermo Finnigan, CA). The capillary separation
column was prepared as previously described (32). Briefly, the cap-
illary was manually pulled to a fine point of � 3 �m with a flame torch
and then was packed with C18 aQ beads (5 �m, 120 Å) in a home-
made pneumatic pressure cell using a slurry packing method. The
lyophilized fractions from the first dimension were resuspended in 10
�L of 0.1% FA solution, and 2 �L of the sample were then manually
loaded onto the column with each sample replicated three times. The
mobile phase A was 0.1% FA in water and B was 0.1% FA in
acetonitrile; gradient elution was performed with 3–25% B in 90 min
at a flow rate after splitting 200 nL/min.

The MS analysis was performed on LTQ-Orbitrap mass spectrom-
eter (Thermo, San Jose, CA) with a resolution of 100000 at m/z 400.
The temperature of the ion transfer capillary was set at 200 °C. The
spray voltage was set at 1.8 kV and the normalized collision energy
was set at 35.0%. The detection of phosphopeptides was performed
with the mass spectrometer set for a full scan MS followed by three
data-dependent MS2 events. Subsequently, the MS3 spectrum was
automatically triggered when a neutral loss event of 97.97, 48.99, or
32.66 Da (loss of H3PO4 for the �1, �2 and �3 charge ions, respec-
tively) was detected among the three most intense peaks in MS2. The
target ion setting was 5e5 for the Orbitrap, with a maximum fill-time of
500 ms. MS2 scans were acquired in the LTQ with a target ion setting
of 3e4 and a maximum fill-time of 100 ms. The dynamic exclusion
function was set as follows: repeat count 2, repeat duration 30 s, and
an exclusion duration of 60 s.

Database Search and Data Analysis—The peak list files for MS2
and MS3 spectra were extracted by Extract_msn.exe in Bioworks 3.3
using default settings. The MS2 and MS3 spectra were searched with
SEQUEST (version 2.8) against a composite database containing
both the original human IPI protein database (ipi.HUMAN.v3.17.fasta,
including 60234 entries, http://www.ebi.ac.uk/IPI/IPIhuman.html) and
its reversed complement. Trypsin was set as the specific proteolytic
enzyme with fully enzymatic and up to two missed cleavages were
allowed. The mass tolerance for the precursor ion was set as 50 ppm
and 0.8 Da for the fragment ion. Carbamidomethylation (�57.02146
Da) on cysteine was set as fixed modification, whereas oxidation
(�15.99452 Da) on methionine, phosphorylation (�79.96633 Da) on
serine, threonine, and tyrosine were set as variable modifications. For
the searching with MS3 data, �-elimination of phosphoric acid
(–18.010565 Da) on serine and threonine residues were also selected
as variable modifications.

The database search results were processed with the software
suite of ArMone, which was recently designed for the management
and analysis of phosphoproteome data (26). The assignment of p-
sites from identified phosphopeptides was determined by the Ascore
algorithm (33), which was also implemented in ArMone (26). Based on
the classification filtering strategy (34), the identified phosphopep-
tides were classified into four groups (supplemental Table S4, S5, S6,
and S7). The mass spectra without significant neutral loss or without
consecutive MS3 spectra were defined as the NoNeutral class (sup-
plemental Table S5). The group of mass spectra with significant
neutral loss was further separated into three classes, such as MS2/
MS3 (MS2/MS3 pair can generate the same phosphopeptide assign-
ment, supplemental Table S4), NeutralMS2 (Phosphopeptide exclu-
sively generated from the MS2 spectra, supplemental Table S6) and
NeutralMS3 (Exclusively generated from the MS3 spectra, supple-
mental Table S7) classes. Based on the different characteristics of
four classes identifications, different filtering strategies were adopted
to achieve the false discovery rate (FDR)�1% (FDR � 2Nd/N, in which
N is the number of peptide matches with scores above the cut-off and

Nd was the number of matches to decoy sequences). For MS2/MS3
identifications, DeltaCn’m	0.1, Xcorr’s	0.63; for NoNeutral, Delta-
Cn	0.1, Xcorr	2.6, 3.2, 4.2 and 4.8 for �1, �2, �3 and �4 charge
states respectively; for NeutralMS2, DeltaCn	0.1, Xcorr	2.5, 3.8, 4.7
and 5 for �1, �2, �3 and �4 charge states respectively; for Neu-
tralMS3, DeltaCn	 0.1, Xcorr	2.2, 3.5, 4.5 and 4.3 for �1, �2, �3
and �4 charge states respectively.

All of the mass spectra with matched ion information of identified
unique phosphopeptides were generated by the batch drawing mod-
ule of Armone (26) and exported in .html format with hyperlinks to the
spectrum images. The annotated spectra can be accessed at the
publicly accessible database Tranche (https://proteomecommons.
org/tranche/), using the following hash: XnGGs9eaZCdxxw6gb
I6RXpfe�0EKutSSQL7Ue3zcwrGG4lMY44oXJAr0B�mYzJmWUou2
bfn0B6ojsAhSBvaRTAIX4G4AAAAAAAADnQ��.

RESULTS

Development of iGPS for the Prediction of in vivo ssKSRs—
In a previous study (24) we developed the software GPS 2.0,
which could predict the kinase-specific p-sites for 408 PKs in
humans. We estimated the FPR by randomly generating
PSP(7, 7) peptides based on the real frequencies of amino
acids in the eukaryotic proteomes. The high, medium, and low
cut-off values were chosen based on the FPRs of 2%, 6%,
and 10% for serine/threonine kinases (STKs), and 4%, 9%,
and 15% for tyrosine kinases (TKs). With these high thresh-
olds, we directly predicted 170,593 ssKSRs for 12,219 un-
annotated p-sites from a total of 13,254 mammalian sites
(�14 PK groups per site) (24). Although the coverage rate was
very high at �92.19%, it is strongly suspected that a large
proportion of the predicted results might be false positive hits,
because in vivo numerous contextual factors only permit a
small number of PKs to specifically reach their substrates.
Moreover, the GPS 2.0 program used a hierarchical structure
with four levels, whereas only 39,540 kinase-substrate inter-
actions for 7813 p-sites (a coverage rate of �58.9%) were
predicted at the single PK level (24). In addition, in our current
data set, there are 35,711 nonmammalian p-sites (�24.5%).
Annotation of the potential PK information for these sites
continues to be a formidable challenge.

To address these issues, we first hypothesized that eukary-
otic PKs classified in a same group, family or subfamily would
recognize similar consensus motifs/patterns of substrate
modification, although the recognition similarities would differ
in extent for the different PK clusters. Thus, if one site was
predicted to be phosphorylated by any PK group, family, or
subfamily, we assumed that all the PKs in the same cluster
would phosphorylate the site. Second, the “kiss-then-fare-
well” (KTF) model was adopted (24, 35). Thus, the PPI infor-
mation was used as the major contextual factor to reduce
false positive predictions (supplemental Table S19 and sup-
plemental Fig. S1). Although some proportion of “kisses”
might be slight and transient and thus not detected in stand-
ard PPI screenings, the interaction information would be ex-
pected to significantly enrich PK substrates, at least for Au-
rora-B (24) and PKA (35).
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Based on the two hypotheses, we developed a novel soft-
ware package of iGPS mainly for the prediction of in vivo
ssKSRs from eukaryotic phosphoproteomic data (supple-
mental Fig. S2). The full computational procedure is shown in
Fig. 1. First, we collected 28,457 phosphorylated substrates
containing 145,646 p-sites from five eukaryotic organisms
(Fig. 1 and supplemental Table S1). The GPS 2.0 algorithm
was used for the prediction of ssKSRs, whereas a low thresh-
old was chosen with a FPR of 10% for STKs, and 15% for
TKs, respectively (24). The original GPS 2.0 software con-
tained 213 subpredictors for 144 STK and 69 TK clusters (24).
However, because of the training data limitation, not all pre-
dictors showed an accurate performance. To ensure the ac-
curacy of our predictions, we selected 56 STK- and 21 TK-
specific predictors in GPS 2.0 for most of the PKs
(supplemental Table S8). To further reduce the number of
false-positive hits at the substrate level, the predicted and
experimentally identified physical interactions between PKs
and substrates were combined and used as the major con-
textual filters (Fig. 1 and see supplemental Experimental Pro-
cedures). To visualize potential PPNs, the orientation was
simply defined as Kinase -	 Substrate. Because a number of
substrates might be PKs, the orientation could also be Kinase
A -	 Kinase B (A phosphorylates B) or Kinase A �-	 Kinase
B (A and B reciprocally phosphorylate each other) (Fig. 1).

The PPI Information Can be an Efficient Filter to Reduce
Potentially False Positive Hits—Although a number of contex-
tual factors are believed to contribute additional specificity

beyond the phosphorylation motif (7–10), here we only ad-
opted one major factor of PPI information. Whether this single
factor is able to significantly improve the prediction accuracy
remains to be tested. Here, we collected a testing data set by
obtaining from Phospho.ELM 8.2 (12), with 3508 kinase-spe-
cific p-sites in 1390 substrates (supplemental Table S20). The
regulatory PKs of 3485 p-sites (99.3%) were identified in
low-throughput experiments at a high level of confidence
(supplemental Table S2). We calculated the prediction perfor-
mances under three conditions: without PPI (No PPI), with
both STRING and experimental PPI (STRING and Exp. PPI),
and with experimental PPI information alone (Exp. PPI). The
results for several typical predictors are shown in Table II, and
the full performance results are available in supplemental
Table S9. Clearly, the use of STRING and Exp. PPI or Exp. PPI
moderately reduces the Sn but greatly enhances the Sp and
Kpr. For example, without the PPI information, the Sn, Sp, and
Kpr of AGC/AKT are 95.56%, 91.96%, and 12.45%, respec-
tively. These values are 88.89%, 98.27%, and 25.45%, re-
spectively, when STRING and Exp. PPI are used and 71.11%,
98.72%, and 51.74%, respectively, when Exp. PPI is used
(Table II). For all of the PKs, the Sn decreased from 89.79%
(No PPI) to 64.74% (both STRING and Exp. PPI) and 49.09%
(Exp. PPI), and the Kpr increased from 23.25% (No PPI) to
40.69% (STRING and Exp. PPI) and 62.65% (Exp. PPI), 1.8-
and 2.7-fold enhancements, respectively (Table II). This
shows that the PPI information can greatly decrease the num-
ber of potential false-positive PKs for p-site annotation. In

FIG. 1. The computational proce-
dure for predicting ssKSRs from eu-
karyotic phosphoproteomic data and
visualizing potential PPNs.
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addition, predictions suggest that regulatory PKs for the p-
sites may not be fully identified. Thus, we mixed these sites
together with other un-annotated p-sites for further analysis.

Extensive evaluations were performed for the prediction of
145,646 eukaryotic p-sites in 28,457 substrates (supplemen-
tal Table S10). Without the PPI information, we directly pre-
dicted 4,001,298 ssKSRs for 127,697 p-sites of all of the
species, with a coverage rate of 87.7% (Table III and supple-
mental Table S11). When PPI information was used, although
the coverage rates were reduced to 30.4% and 11.0% for the
total PPIs and the experimental PPIs, respectively, the poten-
tial ssKSRs were also decreased to 186,922 (4.67%) and
34,873 (0.87%) (Table III and supplemental Table S11). In this
regard, the potentially false positive predictions were greatly
reduced through the PPI contextual filter. Because the cov-
erage rate with the exclusively experimental PPIs is too low,
both experimental and predicted PPIs were used for further
analysis. Although the coverage rate can be enhanced if the
threshold is relaxed, we adopted the current parameters for
iGPS to ensure a high degree of confidence.

Additionally, the Lpr values were calculated (supplemental
Table S10). For AGC/PKA, the Lpr was enhanced from
52.23% (No PPI) to 58.06% (STRING and Exp. PPI) and
59.82% (Exp. PPI), with a p value of 2.8e-7 and 2.6e-6 (Fish-
er’s Exact Test, 2-Tail, http://www.langsrud.com/fisher.htm),
respectively. However, the Lpr was not significantly increased
for AGC/AKT (p value 	 0.05) (supplemental Table S10).
Although not all of the Lpr values were increased, the total Lpr
for all of the PKs was enhanced from 50.58% (No PPI) to
55.89% (STRING and Exp. PPI) and 61.08 (Exp. PPI) (both p
value � 3e-280), respectively (supplemental Table S10).

Comparison of iGPS with NetworKIN—In 2007, Linding et
al. presented a pioneering study by introducing contextual
factors to reduce potentially false positive hits for the predic-
tion of ssKSRs (8, 9). The NetworKIN 1.1 contains 21 PK

classifiers to predict kinase-specific p-sites for 108 PKs (8, 9),
whereas the NetworKIN 2.0 beta version can predict ssKSRs
for 123 PKs with 59 PK classifiers (unpublished). Here, we
compared iGPS with both NetworKIN 1.1 and NetworKIN 2.0
beta for 12 PK groups, including 8 STK groups and 4 TK
groups (Table I). To avoid any bias, the same testing data set
was adopted for iGPS, NetworKIN 1.1 and NetworKIN 2.0
beta. Besides the known p-sites in Phospho.ELM 9.0 (12,
28), we additionally curated kinase-specific p-sites from the
scientific literature. The nonredundant testing data set con-
tains 1280 substrates with 2894 p-sites for the 12 PK
groups (Table I).

We fixed the Sp values of iGPS so as to be similar to the two
predictors, and then compared the Sn values (Table IV). In
NetworKIN 1.1, the PK classifiers of CMGC/CDK/CDC2, Oth-
er/AUR/AUR-A, TK/ABL and TK/Syk were not available (8, 9).
Thus, we chose the cdk5 predictor for CMGC/CDK/CDC2,
whereas the performances of Other/AUR/AUR-A, TK/ABL and
TK/Syk were not compared. Except AGC/AKT, Atypical/PIKK/
ATM and Other/CK2, iGPS outperformed NetworKIN 1.1 for
up to 6 PK groups (Table IV). For example, when the Sp value
was 93.28%, the Sn values of iGPS and NetworKIN 1.1 for
AGC/PKA were 57.56% and 32.20%, respectively (Table IV).
Also, when the Sp value was 96.97%, the Sn of iGPS
(56.76%) was much better than NetworKIN 1.1 (12.16%) for
TK/EGFR (Table IV). For NetworKIN 2.0 beta, it only showed
superiority for Other/CK2, whereas the performance of Atyp-
ical/PIKK/ATM was reduced and similar with iGPS (Table IV).
The iGPS generated much better performances on the re-
maining 10 PK groups (Table IV). Taken together, we pro-
posed the performance of iGPS is generally better than
NetworKIN.

Computational Modeling and Analysis of Eukaryotic PPNs
from the Phosphoproteomic Data—For the five eukaryotic
phosphoproteomes, we predicted 186,922 ssKSRs among

TABLE II
Performance evaluation

For the testing data set, we took 1390 substrates with 3508 kinase-specific p-sites from Phospho.ELM 8.2 database (12). We calculated the
prediction performances under three conditions, i.e. without any PPI (No PPI), STRING and experimental PPI (STRING & Exp. PPI), and only
experimental PPI (Exp. PPI) information. The PPI filter moderately reduced the Sn but greatly enhanced the Sp and Kpr.

Predictor
No PPI String & Exp. PPI Exp. PPI

Sn Sp Kpr Sn Sp Kpr Sn Sp Kpr

AGC/AKT 95.56% 91.96% 12.45% 88.89% 98.27% 25.45% 71.11% 98.72% 51.74%
AGC/PKA 89.12% 92.11% 11.18% 47.75% 98.96% 25.09% 30.24% 99.28% 53.89%
CAMK/CAMK2 95.74% 90.19% 18.42% 59.57% 98.80% 35.81% 19.15% 99.31% 56.79%
CMGC/CDK 98.56% 85.41% 19.05% 64.27% 97.26% 36.57% 25.94% 98.46% 57.89%
CMGC/MAPK 92.41% 86.18% 17.03% 76.90% 97.37% 24.45% 60.07% 98.10% 56.11%
Other/AUR/AUR-B 100% 83.39% 14.99% 53.33% 94.57% 36.84% 30.00% 97.87% 46.30%
Other/CK2 85.98% 84.25% 10.39% 48.60% 98.02% 29.62% 41.12% 98.30% 63.64%
TK/Abl 82.00% 81.45% 16.94% 66.00% 91.21% 26.63% 32.00% 94.73% 36.00%
TK/InsR 93.94% 81.51% 16.91% 78.79% 93.84% 26.56% 77.27% 94.96% 44.32%
TK/Src 70.75% 82.91% 11.79% 58.16% 93.41% 21.81% 46.60% 94.18% 41.65%
STKs 90.94% 80.56% 24.79% 63.11% 97.56% 43.47% 46.67% 98.37% 68.69%
TKs 85.34% 80.27% 13.51% 71.09% 93.64% 31.72% 58.52% 94.80% 51.12%
All PKs 89.79% 80.55% 23.25% 64.74% 97.33% 40.69% 49.09% 98.16% 62.65%
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the 1079 PKs and 9247 substrates for the 44,290 p-sites, with
an average of 4.2 upstream PKs per p-site and 57.6 sub-
strates per PK (Table III and supplemental Table S11). The
number of predicted phosphorylated proteins and p-sites for
each PK were summarized in supplemental Table S12. For
example, the PPNs in S. cerevisiae (Fig. 2A) and H. sapiens
(Fig. 2B) were modeled and shown. The human PPN contains
113,923 ssKSRs among the 380 PKs and 4140 targets for the
22,817 p-sites, with an average of 5.0 upstream PKs per
p-site and 98.7 substrates per PK (Table III and Fig. 2B). Using
pairwise comparison we found only 653 (3.1%) and 1,291
(0.7%) conserved ssKSRs in S. cerevisiae and H. sapiens,
respectively (supplemental Table S13). Thus, eukaryotic
phosphorylation is poorly conserved at the site and substrate
levels. And this result is consistent with a previous analysis
(17, 25).

By comparison, we found only one KSR of the kinase
BUR1/CDK9, which phosphorylates the transcription elonga-

tion factor protein Spt5, to be conserved in all five eukaryotic
phosphoproteomes (Fig. 3). In S. cerevisiae, BUR1 might
phosphorylate Spt5 at the single site of S136 in its N terminus,
whereas its ortholog, CDK9, can phosphorylate up to 11 sites
in humans (Fig. 3). We observed that fly Spt5 and S76, along
with mouse and human Spt5 S19, are also phosphorylated
(Fig. 3). Although the p-sites are not in the same position after
sequence alignment, the Spt5 N terminus phosphorylation by
BUR1/CDK9 might be a conserved mechanism. By sequence
alignment, we observed that only the two p-sites of T806 and
T814 in human are conserved in all five species (Fig. 4). From
these results, it is proposed that segment around the last
KOW (Kyprides, Ouzounis, Woese) domain might be the
hotspot (from S666 to T814 in humans) for phosphorylation by
CDK9 (Fig. 3). Furthermore, recent progress suggests that the
transcription elongation factor Spt5 can be in vivo phosphor-
ylated by BUR1 to recruit the polymerase-associated factor
(PAF) complex in yeast (36, 37). The in vitro experiments

TABLE III
The statistics of prediction results for five eukaryotic phosphoproteomes

Organism
String & Exp. PPI No PPI

PK Sub.a Site ssKSR Aveb PK Sub. Site ssKSR Ave

S. cerevisiae 91 1598 7041 20,909 3.0 91 2658 12,889 145,409 11.3
C. elegans 110 272 544 867 1.6 302 2153 5112 107,738 21.1
D. melanogaster 140 888 2697 6191 2.3 172 3896 13,656 236,780 17.3
M. musculus 358 2349 11,191 45,032 4.0 415 8219 43,131 1,588,383 36.8
H. sapiens 380 4140 22,817 113,923 5.0 407 9452 52,909 1,922,988 36.3
Total 1,079 9247 44,290 186,922 4.2 1387 26,378 127,697 4,001,298 31.3

a Sub., number of phosphorylated substrates.
b Ave, the average number of upstream PKs per p-site.

TABLE IV
Comparison of iGPS with NetworKIN 1.1 and NetworKIN 2.0 beta

We fixed the Sp values of iGPS so as to be similar to the two predictors, and then compared the Sn values. The performances with better
values than those from iGPS are bold.

PK clusters
NetworKIN iGPS

Ac Sn Sp MCC Ac Sn Sp MCC

NetworKIN 1.1
AGC/AKT 98.87% 58.89% 99.44% 0.5865 98.81% 52.22% 99.47% 0.5445
AGC/PKA 92.24% 32.20% 93.28% 0.1277 92.67% 57.56% 93.28% 0.2481
Atypical/PIKK/ATM 97.50% 77.42% 97.83% 0.5204 97.47% 75.27% 97.83% 0.5080
CAMK/CAMK2 98.43% 5.85% 99.91% 0.1671 98.51% 10.64% 99.91% 0.2580
CMGC/MAPK 93.45% 65.34% 94.06% 0.3312 93.60% 71.12% 94.09% 0.3614
CMGC/CDK/CDC2a 94.58% 46.67% 95.69% 0.2825 94.75% 54.04% 95.69% 0.3268
Other/CK2 90.17% 55.49% 91.14% 0.2511 90.25% 54.85% 91.24% 0.2495
TK/EGFR 85.26% 12.16% 96.97% 0.1554 91.42% 56.76% 96.97% 0.6059
TK/Src 90.04% 23.97% 95.40% 0.2141 90.69% 32.64% 95.40% 0.2956

NetworKIN 2.0 beta
AGC/AKT 98.55% 42.78% 99.33% 0.4436 98.71% 54.44% 99.33% 0.5334
AGC/PKA 96.02% 32.44% 97.11% 0.2110 96.31% 50.24% 97.11% 0.3244
Atypical/PIKK/ATM 93.90% 91.40% 93.94% 0.4064 94.60% 90.32% 94.67% 0.4246
CAMK/CAMK2 91.18% 27.13% 92.20% 0.0881 91.56% 49.47% 92.23% 0.1866
CMGC/MAPK 96.80% 1.59% 98.87% 0.0063 97.43% 31.08% 98.87% 0.3280
CMGC/CDK/CDC2 97.29% 0.35% 99.54% –0.0023 97.46% 7.72% 99.54% 0.1377
Other/AUR/AUR-A 91.61% 32.73% 92.66% 0.1244 92.15% 54.55% 92.82% 0.2291
Other/CK2 80.06% 75.32% 80.19% 0.2202 79.65% 60.34% 80.19% 0.1619
TK/ABL 89.00% 13.33% 96.72% 0.1449 90.54% 30.00% 96.72% 0.3323
TK/EGFR 84.70% 12.16% 96.32% 0.1362 91.42% 60.81% 96.32% 0.6162
TK/Src 90.88% 2.07% 98.09% 0.0029 92.18% 19.42% 98.09% 0.2611
TK/Syk 86.67% 2.08% 99.68% 0.0806 89.17% 20.83% 99.68% 0.4051
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indicate that the C-terminal repeat domain (CTD) of yeast
Spt5 is potentially responsible for modification, whereas the in
vivo verification still remains to be obtained (36, 37). However,
the yeast Spt5 CTD is not conserved in other species.
Whether Spt5 CTD in higher eukaryotes is phosphorylated by
CDK9 remains to be verified in vivo. In this regard, BUR1/
CDK9 might phosphorylate Spt5 in a quite complicated man-
ner. The predictions might be useful for further experimental
investigation.

Systematic Analysis of the Human Liver Phosphoproteome
and PPN—The liver is the largest internal organ in the human
body. Beyond digestion, it plays a variety of essential roles in
cell proliferation/differentiation, catabolism/metabolism, em-
bryonic development, detoxification, drug pharmacokinetics,
and so on (38). In 2002, the Human Liver Proteome Project
(HLPP) was started as the first initiative for the understanding
organ- or tissue-specific proteomes in humans (38). The re-
cent completion of proteome, transcriptome, CHIP and mas-
sively parallel signature sequencing (MPSS) studies from the
Chinese human liver proteome project (CNHLPP) revealed
that tens of thousands of proteins/genes are regulated in the
human liver (39, 40). Determining how these proteins/genes
are temporally and spatially modulated is still a great chal-
lenge, and the functional roles of PTMs in the liver remain to
be elucidated.

In this work, we conducted a global phosphorylation anal-
ysis of the human liver, and experimentally identified 10,644
nonredundant phosphopeptides (Fig. 5A). The excellent per-

formance of the new RP-RPLC approach on the in-depth
phosphorylation analysis was shown by the uniform distribu-
tion of the identified phosphopeptides throughout the first
dimension (Fig. 5B). In contrast with our previous strategy that
only phosphopeptides identified by both MS2 and MS3 in the
MS2/MS3 class were retained (15, 16), the classification fil-
tering strategy (34) generated a 31.8% increase in phospho-
peptide identification by incorporating phosphopeptides
identified exclusively from only the MS2 or MS3 spectra (Fig.
5C). In our results, there were 7214 singly (67.8%), 2403
doubly (22.6%), and 1027 triply (9.6%) phosphorylated pep-
tides (Fig. 6A). Multiply phosphorylated peptides occupied
over 30% of the total identifications (Fig. 6A), and this result is
consistent with other large-scale phosphoproteomic studies
(1, 14). The phosphopeptides were mapped to the UniProt
benchmark sequences, and totally 9719 p-sites were identi-
fied from 2998 substrates. The distribution of phosphoserine
(pS), phosphothreonine (pT) and phosphotyrosine (pY) sites is
85.3% (8,294), 12.9% (1,249) and 1.8% (176) respectively
(Fig. 6B), and the result is similar with a previous study al-
though different samples were used (1). More details on the
phosphopeptide analysis are present in supplemental Re-
sults and supplemental Figs. S3-S6.

By comparing with 60,816 known p-sites collected from
heterogeneous resources, we observed that 5818 (59.9%)
p-sites with 5063 pS, 664 pT and 91 pY sites have been
reported previously (Fig. 6C). The high percentage of known
p-sites indicates that p-sites identified in this study are of high

FIG. 2. Eukaryotic PPNs were modeled and visualized based on predicted ssKSRs from the phosphoproteomic data. A, The PPN of
S. cerevisiae contains 20,909 ssKSRs among 91 PKs and 1,598 substrates for the 7,041 p-sites; B, The PPN of H. sapiens contains 113,923
ssKSRs among the 380 PKs and 4,140 targets for the 22,817 p-sites.
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confidence. Using iGPS, we predicted a potential PPN con-
taining 12,819 potential ssKSRs among 350 PKs and 962
substrates for 2633 p-sites from the human liver phosphopro-
teome, with a coverage rate of 27.1% (supplemental Table
S14). From the top 10 PKs with the most predicted p-sites, we
observed that up to 6 PKs belong to the CMGC PK group,
such as Erk1, CDK2, Erk2, and GSK3A, p38a and CDC2
(supplemental Table S14). Although these PKs were predicted
to phosphorylate more p-sites, we speculated whether some
PKs preferentially modify more or fewer p-sites in the liver
PPN against the whole human PPN. To address this problem,
we performed the Yates’ chi-squared (�2) test with the 2 � 2

contingency table method (41) (for more details see supple-
mental Experimental Procedures). Totally, we observed that
60 PKs significantly modify more p-sites, whereas 67 PKs
preferentially modify fewer p-sites (p value � 0.01, see sup-
plemental Table S15). The top 10 PKs with significantly over-
or under-represented p-sites in the human liver PPN were
shown in Table V, respectively. Previously, experimental stud-
ies revealed that AKT family PKs play a predominantly regu-
latory role in regulating the hepatic gluconeogenesis (42, 43).
In the results, we observed that the p-sites of AKT1 are
significantly over-represented with an enrichment ratio of 1.55
(p value � 3.04E-19) (Table V). Also, it was reported that the

FIG. 3. Only one KSR of the kinase BUR1/CDK9, which phosphorylates the transcription elongation factor protein Spt5, is conserved
in all five eukaryotic PPNs.

FIG. 4. By sequence alignment, we
observed that the two p-sites of T806
and T814 in human Spt5 are con-
served in all five species. Both sites
were predicted to be phosphorylated by
BUR1/CDK9.
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FIG. 5. Overview of the strategy used for the large-scale phosphorylation analysis of the human liver. A, Scheme for sample
preparation and data processing of the human liver. B, Distribution of identified unique phosphopeptides from 45 pooled fractions.
C, Distribution of identified unique phosphopeptides in four groups based on the classification filtering strategy (26).

FIG. 6. The data statistics of the human liver phosphoproteomic analysis. A, The distribution of singly, doubly, and triply phosphorylated
peptides; B, The distribution of pS, pT and pY sites in the human liver phosphoproteome; (C) By comparing with known information (Whole),
up to 5818 p-sites have been reported previously; D, The distribution of pS, pT and pY sites in the whole human phosphoproteome.
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CK2 activity increases after hepatectomy or laparatomy (44).
Thus, the significantly enriched p-sites for CK2 might be
attributed to the enhanced activity (E-ratio � 1.87, p value �

1.46E-35, Table V). Furthermore, ribosomal S6 kinases (RSKs)
can be activated by hepatotoxin CCl4 on liver injury (45). In
the results, the p-sites of up to five members of AGC/RSK
group such as MSK1, RSK4, MSK2, p70S6K and RSK1 are
significantly enriched (Table V). Because of the relatively low
abundance of tyrosine phosphorylation, the number of iden-
tified pY sites from large-scale studies will be limited without
specific enrichment through anti-pY antibodies (14). However,
in our data set, the distribution of pY in the whole human
phosphoproteome is 22.6% (Fig. 6D), with an order of mag-
nitude higher than in liver (1.8%) (Fig. 6B). Thus, it can be
expected that the p-sites of most TKs will be under-repre-
sented, because tyrosine-specific strategies were not used in
our analysis. Indeed, no TKs were detected with over-repre-
sented p-sites, whereas 57 TKs (85.1%) preferentially modify
fewer p-sites (Table V, supplemental Table S15).

DISCUSSION

In the post-genomic era, the dissection of the functional
complexity and diversity of the proteome has emerged as an
urgent challenge. In particular, proteins are transiently and
dynamically regulated by hundreds of PTMs in vivo, which
adds a dimension of functional complexity. As one of the most
essential PTMs, phosphorylation has attracted considerable
attention for its functional importance (1–3). Investigating
phosphorylation at the systemic level can help in the under-

standing of its molecular mechanisms and regulatory activity
(8–10). Rapid progresses in phosphoproteomics using phos-
phopeptide enrichment and HTP-MS techniques have de-
tected tens of thousands of potential in vivo p-sites with high
confidence (1, 14, 22). However, deeper analysis of these
un-annotated p-sites to allow elucidation of ssKSRs in eu-
karyotes is lacking and at present is hampered by limited
computational methods. In contrast with previous studies that
focused exclusively on humans (8, 9, 17), here we designed a
general and integrative approach to predict in vivo ssKSRs in
five eukaryotic species. In iGPS 1.0, the GPS 2.0 algorithm
was used to predict potential PKs for un-annotated p-sites
(24), and both experimentally identified and pre-predicted PPI
information was adopted for further filtering of false-positive
hits. Extensive evaluations and comparisons suggest the pre-
diction performance to be promisingly accurate and better
than NetworKIN (8, 9) (Table IV).

With this powerful tool, we systematically predicted poten-
tially ssKSRs and modeled PPNs from eukaryotic phospho-
proteomic data. The total predictive coverage is 30.4%
(44,290/145,646), which is a great amount of information for
experimentalists. Among the top 10 PKs with the most p-sites
in the five eukaryotic phosphoproteomes, we observed up to
33 PKs (66.7%) that belong to the CMGC group (supplemen-
tal Table S12). The PKs in the CMGC group are implicated in
the cell cycle/cell division (e.g. CMGC/CDK) and signal trans-
duction (e.g. CMGC/MAPK and CMGC/GSK) pathways (from
the GO annotations in the UniProt database), which is con-

TABLE V
Top 10 PKs with significantly over- or under-represented p-sites in human liver PPN, respectively

PK Name Uniprota Predictor in
iGPS

String & Exp. PPI

Protein Site E-ratiob �2c p valued

PKs with over-represented p-sites
CK2a2 P19784 Other/CK2 123 420 1.87 154.92 1.46E-35
CLK1 B4DFW7 CMGC 21 141 2.82 127.27 1.63E-29
AKT1 P31749 AGC/AKT 244 428 1.55 80.41 3.04E-19
MSK1 O75582 AGC/RSK 44 96 2.17 49.46 2.02E-12
RSK4 Q9UK32 AGC/RSK 25 69 2.41 44.96 2.01E-11
MSK2 O75676 AGC/RSK 28 72 2.24 39.80 2.81E-10
PKN2 Q16513 AGC 43 93 1.93 34.87 3.52E-09
p70S6K P23443 AGC/RSK 76 137 1.67 32.18 1.40E-08
CK1d P48730 CK1 42 129 1.69 31.24 2.28E-08
RSK1 Q15349 AGC/RSK 27 68 2.07 30.51 3.31E-08

PKs with under-represented p-sites
SRC P12931 TK/Src 19 21 0.13 128.44 8.99E-30
EGFR P00533 TK/EGFR 8 9 0.08 91.75 9.84E-22
FYN P06241 TK/Src 9 11 0.11 79.07 5.98E-19
ErbB2 P04626 TK/EGFR 6 6 0.07 70.10 5.63E-17
LCK P06239 TK/Src 8 10 0.13 61.82 3.76E-15
INSR P06213 TK/InsR 6 6 0.09 54.70 1.41E-13
KIT P10721 TK/PDGFR 4 4 0.07 54.19 1.82E-13
PDGFRb P09619 TK/PDGFR 9 10 0.15 49.85 1.66E-12
IGF1R P08069 TK/InsR 3 3 0.06 48.53 3.25E-12
ErbB3 P21860 TK/EGFR 2 2 0.04 48.29 3.68E-12

a Uniprot, Uniprot accession number.
b E-ratio, enrichment ratio, the liver PPN proportion divided by the whole human PPN proportion.
c The result of the Yates’ chi-squared (�2) test.
d p value � 0.01.

Computational Analysis of Phosphoproteomic Data

1080 Molecular & Cellular Proteomics 11.10

http://www.mcponline.org/cgi/content/full/M111.012625/DC1
http://www.mcponline.org/cgi/content/full/M111.012625/DC1
http://www.mcponline.org/cgi/content/full/M111.012625/DC1


sistent with the major roles of phosphorylation (1–3, 17). Three
potential hypotheses may be offered to interpret this obser-
vation. First, the prediction might be influenced by the GPS
2.0 algorithm at the p-site level such that better performance
can generate more kinase-specific p-sites (24). In GPS 2.0,
the Ac, Sn, Sp, and MCC of CMGC/MAPK are 86.05%,
91.21%, 85.94%, and 0.2950, respectively, whereas the per-
formance of AGC/GRK is 92.46% (Ac), 94.05% (Sn), 92.37%
(Sp), and 0.5999 (MCC) (24). Although the accuracy of AGC/
GRK is much better than CMGC/MAPK, no GRK members are
included in the top 10 PKs with the most p-sites in any
organism. Also, although the Ac, Sn, Sp, and MCC of Atypi-
cal/PIKK/ATM are 94.47%, 100.00%, 94.38%, and 0.4451,
respectively, the human ATM is not contained in the top 10
PKs with the most p-sites. Thus, this result is not caused by
a bias from the GPS 2.0 prediction. Second, the number of
PPIs might influence the prediction at the substrate level such
that more PPIs lead to a greater number of predicted sub-
strates. We counted the number of PPIs for each PK, and only
14 CMGC PKs (28%) belong to the top 10 PKs with the most
PPIs in the five species (supplemental Table S16). Again,
although the number of GSK3A interacting proteins in humans
is only the 28th in rank (supplemental Table S16), it is one of
the top 10 PKs with the most p-sites in this study (supple-
mental Table S12). Although the number of ATM binding
proteins ranks 8th in humans (supplemental Table S16), it is
not included in the top 10 PKs with the most p-sites (supple-
mental Table S12). In this regard, this observation is not
caused by a bias from the PPI filter. Finally, this prediction
might reflect the bona fide status that most of the p-sites were
phosphorylated and regulated by the CMGC group PKs. In
addition, by analyzing the human liver phosphoproteome, we
observed a similar result that 6 of the top 10 PKs with the
most p-sites belong to CMGC PKs (supplemental Table S14).
Taken together, it is proposed that CMGC PKs play a pre-
dominant role in regulating cellular phosphorylation.

Although CMGC PKs play a general role for the phosphor-
ylation, several PKs in a distinct sample might preferentially
modify more or fewer p-sites to ensure the precise regulation.
By the statistical analysis and comparison of predicted results
of human liver and whole PPNs, we observed that a consid-
erable number of PKs significantly regulate more or fewer
p-sites in human liver PPN (supplemental Table S15). Beyond
the results that are consistent with previous analyses, our
study suggested that a number of PKs, such as CLK1, PKN2,
and CK1d, also play a potentially important role in the human
liver PPN (Table V). In 2007, Villen et al. experimentally iden-
tified thousands of p-sites from a 21-day-old mouse liver (14).
By collecting 6089 p-sites in 2209 mouse liver proteins (14),
we predicted 4502 ssKSRs among the 308 PKs and 543
proteins for 1176 p-sites, with a coverage rate of 19.3%
(supplemental Table S17). However, we only detected 13 and
9 PKs with significantly over- or under-represented p-sites
with the Yates’ chi-squared (�2) test (p value � 0.01, supple-

mental Table S18) (41). And the statistical significance is much
lower against the result in the human liver PPN (supplemental
Table S15). In this regard, we proposed that our results might
be more useful for further studying hepatic functions in H.
sapiens.

Our approach can be generally used to identify potential in
vivo ssKSRs in eukaryotes. The total predictive coverage is
30.4% (44,290/145,646) (Table III), which is a great amount of
information for experimentalists. We anticipate that more ef-
ficient contextual filters will be integrated into this method
over time to improve its prediction ability. This study can serve
as a starting point for the general analysis of the various
PTM-regulating proteomes, not limited to phosphorylation.
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