
A new alignment algorithm to identify definitions corresponding to abbreviations
in biomedical text

Yun Xu, ZhiHao Wang, YuZhong Zhao
Anhui Province–MOST Co-Key Laboratory of High Performance Computing and Its Application

University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
xuyun@ustc.edu.cn, {wangzhh, zyzh}@mail.ustc.edu.cn

Yu Xue
School of Life Science

University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
yxue@mail.ustc.edu.cn

Abstract

The exploding growth of the biomedical literature
presents many challenges for biological researchers. One
such challenge is from the use of a great deal of abbrevi-
ations. Extracting abbreviations and their definitions ac-
curately is very helpful to biologists and also facilitates
biomedical text analysis. Among existing approaches, text
alignment algorithms are simple, effective and require no
training data. However, state of the art alignment algo-
rithms could not identify the definitions of irregular ab-
breviations (e.g., <CNS1, cyclophilin seven suppressor>).
We propose an algorithm analogous to pairwise sequence
alignment, in which it is given a penalty score if there are
two unmatched characters separately from the abbreviation
and definition, and in this way some irregular abbreviations
are found.

1. Introduction

The volume of published biomedical papers is expanding
at an increasing rate each year. With biomedical knowledge
expanding so quickly, it is very challenging for biologists to
keep up to date with their own field of biomedical research.
Thus, an automatic method for biomedical knowledge text
mining is urgently needed [1, 2]. In biomedical text mining,
one special issue is the exploding use of new abbreviations
[3]. It would be a great help for literature retrieval to collect
these abbreviations automatically. Furthermore, other text
mining tasks could be done more efficiently if all the ab-
breviations for an entity could be mapped to a single term
representing the concept [2]. Generally, an abbreviation is a

short form of a word or phrase called “definition” or “long
form”. Our task is to identify <“short form”, “long form”>
pairs where there exists a mapping from characters in the
short form to characters in the long form [4].

Existing approaches fall into four broad categories: sta-
tistically based, rule based, text alignment, and machine
learning based. Statistically based approaches always tend
to extract abbreviations that appear frequently in biomed-
ical text, and demand a large corpus for the statistics. Zhou
et al. [5] created an abbreviation database ADAM that an-
alyzed statistical information about collocations of the type
“long-form (abbreviation)” in MEDLINE, and Okazaki N
and Ananiadou [6] built an abbreviation dictionary from
the whole MEDLINE. Although Statistically based meth-
ods show a high precision, they would not find rare abbre-
viations, and need a great deal of time and effort.

Rule based approaches attempt to use the best recogni-
tion rule, and good rules would result in good results. Puste-
jovsky et al. [4] presented a regular expression algorithm
based on hand-built regular expressions, and syntactic in-
formation was considered to identify boundaries of noun
phrases. Ao and Takagi [7] constructed a system called AL-
ICE based on heuristic pattern-matching rules. Yu et al. [8],
Park and Byrd [9] also put forward their own pattern match-
ing rules separately. The shortcoming for these rule based
approaches is that the performance of them is determined
by the completeness of the rules.

Machine learning based approaches generally comprise
of a learner and a predictor, and fit in with all kinds of bio-
medical text by learning. Chang et al. [10] presented a
method for identifying abbreviations using supervised ma-
chine learning. Generally speaking, machine learning based
approaches depend on the learning model and the training

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.53

118

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.53

118

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.53

118

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.53

118

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.53

118

data, and require a lot of labor and time.
Text alignment based approaches always try to find the

optimal alignment between the definition and abbreviation.
Schwartz and Hearst [11] presented a simple algorithm for
identifying the definitions of abbreviations with only two
indices, lIndex for the long form, and sIndex for the short
form. The two indices are initialized to point to the end of
their respective strings. For each character sIndex points to,
lIndex is decremented until a matching character is found.
Chang et al. [10] and Taghva and Gilbreth [12] utilized the
Longest Common Subsequence algorithm in their methods.
However, the state of the art alignment algorithms can not
find irregular abbreviations.

In this paper a dynamic programming algorithm analo-
gous to pairwise sequence alignment [13, 14] is applied.
For the comparison of biological sequences, Needleman
and Wunsch [13] and Smith and Waterman [14] both suc-
ceeded in getting a sub-optimize result based on a dynamic
programming algorithm. Then we improve the algorithm
to make it applicable to the identification of definitions cor-
responding to abbreviations. In the alignment between the
abbreviation and definition, gap insertions are allowed in
abbreviations, and forbidden in definitions. It is given a
penalty score if there are two unmatched characters sepa-
rately from the abbreviation and definition, and in this way
some irregular abbreviations are found.

2. Methods

To find the <short form, long form> pairs can be divided
into two sub-tasks. One sub-task is abbreviation recogni-
tion, and the other is definition identification. Our work is
mainly for the second task. The second sub-task can also
be divided into definition searching and definition identifi-
cation. The flowchart of our work is shown in Figure 1.

2.1. Abbreviation Recognition

For abbreviation recognition, we mainly use the recogni-
tion method presented by Park and Byrd [9]. Their method
is based on a series of rules: the feature of the abbreviation
(or short form) and the syntactic cues in the contexts. The
feature of the abbreviation includes: its first character is al-
phabetic or numeric; it contains at least one letter; its length
is between 2 and 10; it contains at most two words.

The syntactic cues we take into account include:

1. long form (short form) or long form [short form]

2. short form (long form) or short form [long form]

3. short form = long form

4. long form = short form

5. short form, or long form

Abbreviation
Recognition

Biomedical
Text

Syntactic cues

Abbreviation
Feature

Constructing
a Candidate
Definition

List

Data Pre-
processing

Alignment
Algorithm

Select the
optimal

definition

the predicted definition

Definition IdentificationDefinition Searching

Figure 1. This is the flowchart of extracting
abbreviations and their corresponding defin-
itions.

6. long form, or short form

7. short form. . . stands/short/acronym. . . long form

8. long form, short form for short

In practice, most abbreviations appear with parentheses,
i.e. protein kinase C (PKC). We use the similar method for
abbreviation recognition as most researchers, and only con-
sider (1) and (2). For pattern (2), the short form is the one
or two words before the left parenthesis, and the long form
is just the expression inside the parentheses. For pattern (1),
the short form is inside the parentheses, but the long form
is not easy to be found and it need to be searched for before
the left parenthesis.

2.2. Definition Searching

Having recognized the abbreviation, the next step is to
find the candidate definition. The candidate definition ap-
pears in the same sentence as the abbreviation, and it can be
searched for within a search space. The size of the search
space is the sum of the maximum length of a definition (the
number of the words in the definition) and the maximum
offset (the longest distance of a definition from an abbrevi-
ation). In our work, the offset is ignored and we consider
only definitions adjacent to the abbreviations (as most peo-
ple do). Park and Byrd [9] analyzed about 4500 abbrevia-
tions and their definitions, and then they decided that, for
relatively short abbreviations (from two to four characters),
the maximum length of a definition should not be greater
than twice the abbreviation length (the number of the char-
acters in an abbreviation); for long abbreviations (five or

119119119119119

more characters), the definition should not be longer than
the abbreviation length plus 5. Thus, we refer to their work
for the maximum length of a definition DEF of an abbrevi-
ation ABBR:

Max.|DEF | = min (|ABBR| + 5 , |ABBR| ∗ 2) (1)

where Max.|DEF| is the maximum length of a definition,
and |ABBR| is the number of the characters in an abbrevia-
tion.

Then a candidate definition list is constructed from the
search space, and the possible definition is just one item of
it. The list-constructing algorithm is described below.

Procedure 1 Construct the Candidate Definition List CDL
1: Initiate an empty candidate definition list CDL;
2: Num = the number of words from the beginning of

the sentence which contains the abbreviation to the left
parenthesis;

3: if (Num < Max.|DEF|) {
SearchSpaceString = the string from the beginning of
the sentence to the left parenthesis;
} else {
SearchSpaceString = the string that contains
Max.|DEF| words before the left parenthesis;
}

4: WordNum = min (Num, Max.|DEF|);
5: for (N = 0; N < WordNum; N++) {

CandidateDef = SearchSpaceString with the leftmost N
words deleted;
insert CandidateDef into CDL; }

2.3. Definition Identification

Now we have a candidate definition list. Each time we
retrieve an item from the list, and align it with the abbre-
viation employing our alignment algorithm. Afterward we
select the optimal definition.

2.3.1 Data Preprocessing

Usually a definition is abbreviated with a new addition of a
special character (e.g., <Myo3/5p, Myo3p and Myo5p>),
and the lowercase letter from a definition may be changed
into its corresponding capital letter. Before we identify the
definition corresponding to an abbreviation, some data pre-
processing steps must be taken. We delete the character that
is neither alphabetic nor numeric in the abbreviation and
change all capital letters in both the abbreviation and defin-
ition into their corresponding lowercase letters. In order to
differentiate between the space inserted in the alignment al-
gorithm and the space between words of the definition, we
replace the space between words of the definition with the
character ‘\s’.

2.3.2 Alignment Algorithm

The definition identification is a process of comparison be-
tween the abbreviation and definition. In the process, the
smallest unit of comparison is a pair of characters, one from
the abbreviation, and the other from the definition. All pos-
sible comparisons are made from the smallest unit while al-
lowing gap insertions in the abbreviation. Among the com-
parisons the definition with the best match is chosen as the
correct definition. The best match can be defined as the
largest alignment score of characters of the definition that
can be matched with those of the abbreviation.

The largest alignment score can be determined by repre-
senting in a two-dimensional array, all possible pair com-
binations that can be constructed from the abbreviation and
definition, A and D, being compared. A[i] is the ith char-
acter of the abbreviation string and D[j] is the jth character
of the definition string. A[i] and D[j] represent the rows
and the columns of the two-dimensional array SCORE re-
spectively. Then the cell, SCORE[i][j], represents a pair
combination that contains A[i] and D[j].

With the above definition of A[i], D[j] and SCORE[i][j],
now what we need to do is to get the largest value of
SCORE[i][j], which represents the best match. Then dy-
namic programming is used to compute each cell value of
SCORE. Unlike the solutions of Needleman and Wunsch
[13] and Smith and Waterman [14], gap insertions are al-
lowed in abbreviations but forbidden in definitions in our
algorithm, so SCORE[i][j] is determined by SCORE[i][j-
1], SCORE[i-1][j-1] and the alignment of A[i] and D[j], and
not by SCORE[i-1][j]. The below is the recursion equation
for computing the largest value of SCORE[i][j].

Firstly the initial value is assigned:
SCORE[i][j] =0 if i=0 or j=0;

Then, we have

SCORE[i][j] = max
0<i≤length(A)
0<j≤length(D)

{
SCORE[i − 1][j − 1] + w(A[i],D[j])

SCORE[i][j − 1]

(2)

where the w(A[i],D[j]) is defined as:

w(A[i],D[j]) =

2, if A[i] = D[j] and D[j] is the first
character of one word in the definition;

1, if A[i] = D[j] and D[j] is not the first
character of one word in the definition;

−10, if A[i] ! = D[j]
(3)

After the matrix SCORE is filled,
SCORE[length(A)][length(D)] is just the largest alignment
score, the score of the best match. Knowing the largest
alignment score is not enough, we need to get the best
match pathway by traceback.

The best match pathway can be obtained by beginning
at the terminals of both strings (i=length(A), j=length(D))

120120120120120

 d i a l o g \s a c t s

 0 0 0 0 0 0 0 0 0 0 0 0

d 0 2 2 2 2 2 2 2 2 2 2 2

a 0 0 0 3 3 3 3 3 4 4 4 4

s 0 0 0 0 0 0 0 0 0 0 0 5

Figure 2. For example, the definition is “Dia-
log Acts”, and the abbreviation is “DAs”. All
the arrows form the best match pathway.

and proceeding row by row toward the origins. The trace-
back algorithm checks if SCORE[i][j] is obtained from
SCORE[i-1][j-1]. If yes, A[i] is identical to D[j], and both i
and j are decremented. If not, a space is inserted before the
ith character of the abbreviation, and only j is decremented.
The process is repeated until all cells in the matrix SCORE
have been operated upon and i=j=0. The operation of suc-
cessive summations of cell values is illustrated in Figure 2.

2.3.3 Select the optimal definition

From the candidate definition list CDL, we get at most
Max.|DEF| candidate definitions, each of which corre-
sponds to an alignment score provided by the alignment al-
gorithm. Despite the alignment score, it is not enough to
determine the optimal definition. For example,

1. In the text “little is known, however, about how such
dialog acts (DAs) can be automatically classified in
truly natural conversation”, “DAs” will be recognized
as an abbreviation. The optimal definition is “dialog
acts”, but “dialog acts”, “such dialog acts”, “how such
dialog acts” and “about how such dialog acts” will
have the same alignment score;

2. In the text “the mutations map across most of the
Bicoid protein, with some located within the DNA-
binding domain (homeodomain)”, “homeodomain”
will be recognized as an abbreviation wrongly. Then
the alignment algorithm will identify the string “with
some located within the DNA-binding domain” as
its definition. In this alignment, “within the DNA-
binding” in the definition is unmatched (Figure 3 il-
lustrates what “unmatch” means). With too many un-
matched words in the middle of the definition this ab-
breviation must be thrown away;

3. In the text “a questionnaire was sent to them as well
as to 246 physicians who had residency-level teach-
ing responsibilities but who were not named (con-
trols)”, “controls” will be recognized as an abbrevia-

tion wrongly. The alignment algorithm will identify
the string “physicians who had residency-level teach-
ing responsibilities but who were not named” as its de-
finition. In this alignment, “but who were not named”
in the definition is unmatched. With too many un-
matched words in the end of the definition this abbre-
viation must be thrown away;

So we propose a new concept “the redundant word penalty”:

Definition 1 The redundant word penalty is a penalty
against the candidate definitions having several continuous
unmatched words.

 Drosophila epidermal growth factor receptor
 | | |
 D E R

Figure 3. This is an alignment for <DER,
Drosophila epidermal growth factor
receptor>. In the alignment, “growth”
and “factor” in the definition are unmatched.
Adjacent to each other, they are called “con-
tinuous unmatched words”. The number of
the continuous unmatched words is 2.

The penalty depends on the number of the continuous un-
matched words in the candidate definition (Figure 3). If the
number is small, the penalty is low, otherwise the penalty is
high. One unmatch word often appears in true definitions,
for example, for the pair <FMDV, foot and mouth disease
virus>, there is only one unmatched word “and” in the def-
inition. The penalty should be very low in this case. Based
on the analysis, the redundant word penalty (RWP) is di-
vided into the beginning word penalty (BP, a low penalty)
and the extended word penalty (EP, a high penalty). In N
continuous unmatched words, the first C words are given a
penalty score, BP for each word, and the other N-C words
are given another penalty score, EP for each word. Thus,
the equation of RWP is as follows:

RWP = C * BP + EP * (N - C) (4)

There are three cases that the redundant word penalty oc-
curs:

1. The first character of the abbreviation does not match
the first word of the candidate definition (RWP1);

2. Two adjacent characters in the abbreviation match two
separated words in the candidate definition respec-
tively (RWP2);

3. The last character of the abbreviation does not match
the last word of the candidate definition (RWP3).

121121121121121

For example, for the alignment <DER, Drosophila epider-
mal growth factor receptor> in Figure 3, RWP1, RWP2,
and RWP3 are computed as follows:

1. Because the first character “D” of the abbreviation
matches the first word “Drosophila” of the definition,
RWP1=0;

2. For RWP2, any two adjacent characters in the abbrevi-
ation must be considered. “D” and “E” match two ad-
jacent words “Drosophila” and “epidermal” separately,
so RWP2(“DE”)=0; “E” and “R” match two separated
words “epidermal” and “receptor” separately, and the
number of the continuous unmatched words is 2, so
RWP2(“ER”) = C*BP + EP*(2-C). In sum, RWP2 =
RWP2(“DE”) + RWP2(“ER”);

3. Because the last character “R” of the abbreviation
matches the last word “receptor” of the definition,
RWP3=0.

The three cases may appear in the same alignment, so the
total redundant word penalty (TotalRWP) is:

TotalRWP = RWP1 + RWP2 + RWP3 (5)

Then for each alignment, we have

total score=the alignment score-TotalRWP
(6)

At last the optimal definition can be selected from the can-
didate definition list by selecting the largest total score. If
the total score of the optimal definition is larger than the
predefined cutoff score, the optimal definition is identified.

2.4. Evaluating Performance

We use the harmonic mean (F-measure) of precision (ac-
curacy) and recall (coverage) that are commonly used in the
field to evaluate our results. The precision measures the
number of correct <short form, long form> pairs in the an-
swer file over the total number of the pairs in the answer
file, and the recall measures the number of correct pairs in
the answer file over the total number in the key file. With
“TP” labeling true positives, “FP” the false positives and
“FN” the false negatives, the measures are:

Precision = TP
TP + FP

Recall = TP
TP + FN

F-measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(7)

2.5. Scoring scheme

Before our evaluation, the w(A[i],D[j]), the redundant
word penalty, the cutoff score and the variable C (in Equa-
tion (4)) need to be adjusted. They can be regarded as four

parameters, and different value for every parameter will
bring different results. So it is necessary to find the best
value of them to make our algorithm perform well.

Here we provide a simple method to adjust the parame-
ters. We first give the four parameters an initial value sepa-
rately, and then we search for the best value for each of the
four parameters to maximize F-measure when we keep the
other three unchanged. In the procedure the gold standard
DEVELOPMENT corpus [15] is used.

For w(A[i],D[j]), we need to adjust the penalty score that
A[i] differs from D[j]. We run our algorithm against all
possible values of the penalty score for the maximum F-
measure. The relation between F-measure and the penalty
score is illustrated in Figure 4. From the figure we know
the maximum F-measure is got when the penalty score is
-7. Then the penalty score is assigned the value, -7. In

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

 (-7 , 0.8625)

the penalty score that A[i] differs from D[j]

F
 -

 m
e

a
su

re

Figure 4. Relation between F-measure and
the penalty score that A[i] differs from D[j].

a similar way, the redundant word penalty is also adjusted
for the maximum F-measure. According to the above de-
scription, the redundant word penalty includes the begin-
ning word penalty (BP) and the extended word penalty (EP).
One unmatched word often appears in the true definition,
and therefore, BP is assigned a small value, 0.5. Here we
need to adjust EP. The relation between F-measure and EP
is illustrated in Figure 5. The maximum F-measure is got
when EP is 4.5. Then EP is assigned the value, 4.5. With
the w(A[i],D[j]) and the redundant word penalty identified,
the cutoff score is adjusted next. In Figure 6, the cutoff
score ranges from -5 to 4, and the maximum F-measure is
got when it is 0.5. Then the cutoff score is assigned the
value, 0.5. There are some true definitions that contain sev-
eral continuous unmatched words. If we want to find this
kind of definitions, we need to adjust the variable C upward

122122122122122

0 1 2 3 4 5 6 7 8
0.835

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

 (4.5 , 0.8660)

the extended word penalty

F
 -

m
e

a
su

re

Figure 5. Relation between F-measure and
the extended word penalty.

(allowing more continuous unmatched words). Then a ta-
ble is created for comparison when C = 1, 2 and 3. Table 1
shows that the maximum F-measure is got when C = 1.

Table 1. Relation Table between F-measure
and C

F-measure
C = 1 0.8660
C = 2 0.1261
C = 3 0.1204

2.6. Evaluation

To evaluate the algorithm, we have run it against
a publicly available tagged corpus, the Medstract Gold
Standard EVALUATION Corpus [15], which contains
168 <short form, long form> pairs. We compare
our algorithm with three downloadable algorithms for
acronym identification on the corpus: the Chang et
al. [10] algorithm (obtained from http://bionlp.
stanford.edu/webservices.html) at the three
cutoff scores: 0.03, 0.14 and 0.88; the SLICE
[7] algorithm (obtained from http://uvdb3.hgc.
jp/ALICE/program_download.html); the S &
H [11] algorithm (obtained from http://biotext.
berkeley.edu/software.html).

Our result is strictly based on the corpus without correc-
tions, and the extracted pairs must match the marked pairs
exactly. In the result, our algorithm identified 153 <short

-5 -4 -3 -2 -1 0 1 2 3 4
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

 (0.5 , 0.8660)

the cutoff

F
 -

 m
e

a
su

re

Figure 6. Relation between F-measure and
the cutoff score.

Table 2. Comparing with other algorithms on
the gold-standard EVALUATION corpus

Precision Recall F-measure
Chang (score=0.88) 93% 23% 0.37
Chang (score=0.14) 89% 76% 0.82
Chang (score=0.03) 87% 81% 0.84
ALICE 90% 77% 0.83
S & H 91% 77% 0.83
Our algorithm 91% 83% 0.87

form, long form> pairs. Out of these, 139 pairs are correct,
resulting in a recall of 83% and a precision of 91%. Table
2 indicates the result of that comparison with other algo-
rithms on the gold-standard corpus. In our result 14 pairs
are incorrect. 6 of them are not biomedical items: lethal
of scute (l’sc), basic helix-loop-helix (bHLH) , primary
ethylene response element (PERE), Ca2+-sensing receptor
(CaSR), intermediate neuroblasts defective (ind), eliminates
an AP180 homolog (LAP). The other 8 pairs are only par-
tially matched: for the true definition “general transcrip-
tion factor IIB (TFIIB)”, we get “transcription factor IIB
(TFIIB)”; “RNA polymerase I (Pol I)”, we get “polymerase
I (Pol I)”; “RNA polymerase I (Pol II)”, we get “polymerase
I (Pol II)”; “multiprotein von Hippel-Lindau (VHL)”, we
get “von Hippel-Lindau (VHL)”; “cAMP-dependent pro-
tein kinase A (PKA)”, we get “protein kinase A (PKA)”;
“protein Hedgehog (Hh)”, we get “Hedgehog (Hh)”; “tran-
scription factor Cubitus interruptus (Ci)”, we get “Cubitus
interruptus (Ci)”.

Our algorithm misses 29 pairs: 8 of them are only par-

123123123123123

tially matched, that is to say, the true definition includes an
additional word, for example, “RNA polymerase I (Pol I)”,
our algorithm misses the word “RNA”. For the other 21
pairs there are several unmatched characters in the abbre-
viation, or the definition and abbreviation are not separated
by parentheses.

3. Discussion

In this paper, we develop a new alignment algorithm to
identify the definitions corresponding to abbreviations. In
preparation for the alignment algorithm, we need to recog-
nize the abbreviation and define the search space for the
definition. From the search space we construct a candidate
definition list, each item of which is aligned with the ab-
breviation using the alignment algorithm, and then the opti-
mal definition is selected. Our evaluation demonstrate that
the algorithm performs better than the others. It can find
the true definitions exactly for regular abbreviations, even
for some irregular abbreviations (e.g., <CNS1, cyclophilin
seven suppressor>) our algorithm can also find their defin-
itions.

One problem for this algorithm is from the procedure
of optimizing parameters. We use a simple method to op-
timize these parameters: the w(A[i],D[j]), the redundant
word penalty, the cutoff score and the variable C (in Equa-
tion (4)) based on a hypothesis that they are mutually inde-
pendent. In fact there are some correlations between them.
Many optimizing methods exist, such as Genetic Algorithm,
Simulated Annealing Algorithm and so on. We have been
trying to optimize the parameters with these methods, and
this is the topic of our current research.

Our future work is to build a database of biomedical
abbreviations and set up a web server for abbreviation re-
trieval. We will consider more syntactic clues in the con-
texts, the replacement problem between definitions and ab-
breviations, and how to recognize both acronyms and non-
acronyms accurately.

In conclusion, a new alignment algorithm is developed
to identify the definitions corresponding to abbreviations.
The algorithm could find some irregular abbreviations and
achieves a good result in biomedical text. It can also be used
in the general text, or applied in other research areas.

4. Acknowledgements

We thank Ariel Schwartz and Marti Hearst for provid-
ing us the data and the early version of their algorithm.
This work is supported by The Key Project of The National
Nature Science Foundation of China under the grant No.
60533020.

References

[1] Jensen LJ, Saric J, Bork P: Literature mining for the bi-
ologist: from information retrieval to biological discov-
ery. Nat. Rev. Gen. 2006, 7:119-129.

[2] Cohen AM, Hersh WR: A survey of current work
in biomedical text mining. Briefings in Bioinformatics
2005, 6:57-71.

[3] Fred HL, Cheng TO: Acronymesis: the exploding mis-
use of acronyms. Tex Heart Inst J. 2003, 30:255-257.

[4] Pustejovsky J, Castano J, Cochran B: Automatic extrac-
tion of acronym-meaning pairs from medline databases,
Medinfo 2001, 10:371-375.

[5] Zhou W, Torvik VI, Smalheiser NR: ADAM: another
database of abbreviations in MEDLINE. Bioinformatics
2006, 22:2813-2818.

[6] Okazaki N, Ananiadou S: Building an Abbreviation
Dictionary using a Term Recognition Approach. Bioin-
formatics 2006, 22:3089-3095.

[7] Ao H, Takagi T: Alice: An Algorithm to Extract Ab-
breviations from MEDLINE. J. AM. Med. Inform. Assoc.
2005, 12:576-586.

[8] Yu H, Hripcsak G, Friedman C: Mapping abbreviations
to full forms in biomedical articles. J Am Med Inform
Assoc 2002, 9:262-272.

[9] Park Y, Byrd RJ: Hybrid Text Mining for Finding Ab-
breviations and Their Definitions. In Proceedings of the
6th Conference on Empirical Methods in Natural Lan-
guage Processing: 03-04 June 2001; Pittsburgh. Edited
by Lee L, Harman D: Association for Computational
Linguistics Press; 2001:126-133.

[10] Chang JT, Schutze H, Altman RB: Creating an On-
line Dictionary of Abbreviations from MEDLINE. J. Am.
Med. Inform. Assoc 2002, 9:612-620.

[11] Schwartz AS, Hearst MA: A Simple Algorithm for
Identifying Abbreviation Definitions in Biomedical Text.
In Proceedings of the 8th Pacific Sym-posium on Bio-
computing: 03-07 January 2003; Lihue, Hawaii. Edited
by Altman RB, Dukner AK, Hunter L, Jung TA, Klein
TE: World Scientific Press; 2003:451-462.

[12] Taghva K, Gilbreth J: Recognizing Acronyms and
Their Definitions, Technical Report, Information Science
Research Institute, University of Nevada, 1995.

[13] Needleman S, Wunsch C: A general method applica-
ble to the search for simi-larities in the amino acid se-
quence of two proteins. J Mol Biol 1970, 48:443-453.

[14] Smith TF, Waterman MS: Identification of Common
Molecular Subsequences. J Mol Biol 1981, 147:195-197.

[15] http://www.medstract.org

124124124124124

