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Ubiquitin and Ubiquitin-Like
Conjugations in Complex Diseases:
A Computational Perspective

Tianshun Gao, Zexian Liu, Yongbo Wang and Yu Xue

Abstract As one class of most essential and common post-translational modifications
(PTMs), ubiquitin and ubiquitin-like (Ub/UBL) conjugations play an important role in
almost all aspects of biological processes, and aberrances in the conjugation systems
are highly involved in numerous complex diseases. Identification of the
Ub/UBL-associated enzymes, substrates and sites is fundamental for understanding
the molecular mechanisms of Ub/UBL conjugations, and provides a potential reservoir
for discovering disease biomarkers and drug targets. Besides experimental identifi-
cations, computational analysis of Ub/UBL conjugations has also emerged as an
attractive field. In this chapter, we first summarized the cutting-edge experimental
techniques in the large-scale identification of Ub/UBL conjugation substrates, and
further emphasized the importance of computational efforts by introducing online
databases and predictors for Ub/UBL conjugations. Although computational analysis
of Ub/UBL conjugations is still immature, we believe more and more efforts will be
paid in the near future.

Keywords Ubiquitin and ubiquitin-like conjugation � Ubiquitination �
Sumoylation � Proteomics � Small cell lung cancer

T. Gao � Z. Liu � Y. Wang � Y. Xue (&)
Department of Biomedical Engineering, College of Life Science and Technology, Huazhong
University of Science and Technology, Luoyu road, 1037 Wuhan 430074, Hubei, China
e-mail: xueyu@hust.edu.cn

T. Gao
e-mail: gts.hust@gmail.com

Z. Liu
e-mail: lzx@mail.ustc.edu.cn

Y. Wang
e-mail: hust.wangyb@gmail.com

B. Shen (ed.), Bioinformatics for Diagnosis, Prognosis and Treatment of Complex
Diseases, Translational Bioinformatics 4, DOI: 10.1007/978-94-007-7975-4_9,
� Springer Science+Business Media Dordrecht 2013

171



9.1 Introduction

During the past three decades, the ubiquitin-proteasome system (UPS) has been
demonstrated to be critical for protein degradation in most cellular processes
(Ciechanover 1994; Bedford et al. 2011; Geng et al. 2012). Ubiquitin (Ub) is a
small 76aa protein that binds to target proteins and takes them for destruction
through Ubiquitination (Ciechanover 1994), which labels mono- or poly-ubiquitin
proteins to substrates via an E1 (Ub-activating enzyme)-E2 (Ub-conjugating
enzyme)-E3 (Ub-protein ligase) cascade mechanism (Fig. 9.1a). Recently, more
than ten Ub-like modifiers (UBLs) have also been identified, such as SUMO,
NEDD8, ISG15, Apg8/12, FAT10, Urm1, UFM1 and Hub1 in eukaryotes, pro-
karyotic Ub-like protein (Pup) and archaeal SAMPs (Hochstrasser 2009; van der
Veen and Ploegh 2012). The prokaryotic homologs of Ub, ThiS and MoaD, are
potential antecedents of all Ub/UBL modifiers in eukaryotes (Iyer et al. 2006; van
der Veen and Ploegh 2012). Analogous to Ub, most UBLs share a b-grasp fold and
a C-terminal diglycine motif, and their conjugation processes, such as sumoylation
(Fig. 9.1b) and pupylation (Fig. 9.1c), have a conserved enzyme cascade

Fig. 9.1 The conjugation processes for a ubiquitination, b sumoylation, and c Pupylation. For
ubiquitination, an E1-E2-E3 enzyme cascade mechanism was characterized, and Ub E3 ligases
provide the major specificity for substrate recognition. However, SUMO E3 ligases are only
cofactors that facilitate the sumoylation, while pupylation doesn’t have E3s
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mechanism (van der Veen and Ploegh 2012). Ub E3 ligases confer the major
specificity of ubiquitination for recognizing substrates (Deshaies and Joazeiro
2009). However, SUMO E3 ligases are only cofactors that facilitate the conju-
gation of SUMO (Yunus and Lima 2006), and pupylation has only an E1–E2
cascade without any E3 ligases (Striebel et al. 2009). Substrates in the UPS
pathway are ubiquitinated through three forms, mono-, multi- and poly-ubiquiti-
nation (Sadowski and Sarcevic 2010), while several UBL conjugations, such as
SUMO, NEDD8 and SAMP, can also adopt analogical forms for targeting proteins
(Ulrich 2008; Ohki et al. 2009; Humbard et al. 2010). Different forms can lead to
different fates on substrates (Sadowski and Sarcevic 2010). Mono-ubiquitination
affects the activity and location of substrates to be involved in histone regulation,
endocytosis and membrane transport (Hicke 2001), while multi- and poly-ubiq-
uitination mainly induce protein degradation as well as non-proteolytic functions
(Ciechanover 1994; Rape et al. 2006; Chen and Sun 2009).

Ub and UBL conjugation pathways are implicated in diverse but essential
biological functions. Cells usually use these pathways to select specific proteins
for destruction, activation or other functions and ensure the fidelity of cellular
processes (Ciechanover 1994; Chen and Sun 2009). Thus, aberrances in Ub/UBL
conjugation pathways have been identified to be involved in numerous complex
diseases (Dahlmann 2007; Bedford et al. 2011), including inflammation
(Hochrainer and Lipp 2007; Coornaert et al. 2009), viral infection (Bogunovic
et al. 2013), neurodegenerative disease (Hegde and Upadhya 2007; Lehman 2009;
Mandel et al. 2009; Deng et al. 2013), cardiac disease (Sohns et al. 2010; Wang
2011), von Hippel-Lindau disease (Kaelin 2007) and several types of cancers
(Bonacci et al. 2010; Irminger-Finger 2010; Linehan et al. 2010; Conrad et al.
2011; Escobar et al. 2011; Duncan et al. 2012). However, compared to phos-
phorylation, in which protein kinases occupied *30 % of the drug discovery
programs in pharmaceutical research and development, ubiquitination owned less
than 1 % of drug design (Cohen and Tcherpakov 2010), and only one proteasome
Inhibitor Bortezomib was approved currently (Chen et al. 2011). To target com-
plex diseases, theoretically, any components of the UPS and UBL conjugation
pathways, including E1s, E2s, E3s, DUBs and proteasomes, can be selected for
targeting by small-molecule inhibitors. For example, RING E3s including BARD1
and SIAH (Chasapis and Spyroulias 2009; Irminger-Finger 2010; Wong and
Moller 2013), HECT E3 s such as ITCH and SMURF1 (Scheffner and Staub 2007;
Melino et al. 2008; Lin et al. 2013), DUBs such as A20 and UCHL1 (Singhal et al.
2008; Coornaert et al. 2009; Day and Thompson 2010), and proteasome subunits
such as PSMA7 (Du et al. 2009), had been identified as potential biomarkers of
complex diseases. More, inhibitors of several SCF E3 complexes, such as SCFskp2,
SCFb-TrCP1, SCFCDC4, SCFMet30, have also been identified (Chen et al. 2008;
Nakajima et al. 2008; Aghajan et al. 2010; Orlicky et al. 2010). The rapid pro-
gresses suggested that Ub/UBL conjugation pathways can be a great reservoir for
discovering potential biomarkers and drug targets (Cohen and Tcherpakov 2010).
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9.2 Advances in High-Throughput Proteomic Analysis
of Ub/UBL Conjugations

Because Ub E3 ligases bind substrates at distinct regions and modify specific lysine
residues (Bustos et al. 2012), the Ub-mediated proteasomal substrates can be
detected by mutating lysines for poly-ubiquitin chain (Chau et al. 1989), substituting
E3-substrate binding site (House et al. 2006) or eliminating all lysines of substrate
can disrupt the ubiquitination (Bourgeois-Daigneault and Thibodeau 2012). Since
high-affinity Ub antibody, linkage specific antibodies and Ub epitope-tags were
developed, further studies were focused on the detection of Ub-conjugated sub-
strates (Muller et al. 1988; Newton et al. 2008). For a substrate containing only one
ubiquitinated lysine, a single K to R mutation is enough for identifying the ubiq-
uitination site (Flick et al. 2004). However, for multi-ubiquitinated substrates,
accurate identification of all ubiquitination sites needs both individual and combi-
natorial mutations (Zhong et al. 2005). Reintroducing lysine residues one by one
into the lysineless mutant (K0) is also an alternative method for identifying multiple
ubiquitination sites (Rufini et al. 2011). However, any attempts based on the
mutagenesis can only identify one substrate and several ubiquitination sites at most
in a single study (Flick et al. 2004; Zhong et al. 2005; Rufini et al. 2011).

In contrast with conventional studies, high-throughput characterization of
ubiquitinated substrates provides a more comprehensive understanding of the
ubiquitination dynamics and potential relationships between ubiquitinaton and other
important cellular processes. Recently, the technologies of mass spectrometry-based
proteomics have a significant improvement for the identification of ubiquitination
sites (Jeram et al. 2009; Bustos et al. 2012). In the presence of trypsin, Ub-conju-
gated substrates can be cleaved into K-GG modified peptides (Fig. 9.2a), which can
be regarded as ubiquitination signatures (Denis et al. 2007). Thus, the liquid
chromatography-mass spectrometry (LC/MS) analysis can detect a mass shift of
114.043 Da, which represents the diglycine (GG) remnant of Ub (Shi et al. 2011)
(Fig. 9.2a).

Analogous to Ub, NEDD8, ISG15 and Pup can also produce K-GG remnants
with their C-terminal (K/R) GG sequences by the trypsin cleavage, whereas SUMO
can’t because of the absence of a basic residue adjacent to the C-terminal GG motif
(Kang and Yi 2011; Osula et al. 2012). Since the LC/MS identification can’t
distinguish among K-GGs of Ub, NEDD8 and ISG15, adding MLN4924 but not
interferon can effectively block NEDD8ylation and ISG15ylation for exclusively
identifying ubiquitinated substrates (Kim et al. 2011; Zhao et al. 2013). However, if
Ub was not tagged, only one or several ubiquitination sites of one purified substrate
can be identified in vitro (Wang et al. 2005). Thus, with the improvement of Ub
epitope-tagging strategies, large-scale analysis of K-GG peptides can be available
by the trypsin digestion of hundreds of epitope-tagging Ub-conjugated substrates
after in vivo enrichment and purification of Ub-conjugated substrates (Peng et al.
2003; Maor et al. 2007; Danielsen et al. 2011; Kim et al. 2011; Lee et al. 2011;
Shi et al. 2011; Oshikawa et al. 2012; Osula et al. 2012; Starita et al. 2012).
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For example, Peng et al. (2003) identified 110 ubiquitination sites and 1,075
ubiquitinated substrates from yeast cells by using His6-tagged Ub. Also, Maor et al.
(2007) detected 85 ubiquitination sites and 294 Ub substrates from Arabidopsis
cells with GST-tagged Ub. Furthermore, Meierhofer et al. (2008) characterized 44
ubiquitin acceptor sites and 669 ubiquitinated proteins in HeLa cells, using hexa-
histidine-biotin (HB)-fused Ub. In particular, Oshikawa et al. (2012) identified 1392
ubiquitination sites of 794 proteins in HEK293T cells, with His6-tagged K0-Ub.
Additionally, this strategy was also adopted for analyzing other UBL conjugations,
such as pupylation, which can also generate -GG remnants for the high-throughput
identification (Kang and Yi 2011). In fact, Festa et al. (2010) identified 55 pupy-
lation sites from a single sample in Mycobacterium tuberculosis (Mtb). As the
further improvement of MS techniques, the higher-throughput identification of
K-GG peptides was achieved by the direct enrichment of K-GG Peptides in vivo
from cells or tissues (Wagner et al. 2011, 2012; Udeshi et al. 2012, 2013)
(Fig. 9.2b). For example, Wagner et al. characterized [20,000 ubiquitination sites
of [5,200 proteins in murine tissues. In this regard, direct enrichment of K-GG
peptides has attracted more attention for further large-scale assays.

9.3 Data Resources for Ub/UBL Conjugations

Currently, there are 13 databases available for Ub/UBL conjugations (Table 9.1).
To circumvent competitions, most databases were focused on certain aspects. For
example, Lee et al. (2008) developed a budding yeast-specific database SCUD,
including 1 E1, 11 E2s, 42 E3s, 20 DUBs and 940 ubiquitinated substrates.

Fig. 9.2 Proteomic analysis of Ub/UBL conjugation substrates. a Ub-conjugated substrates can
be cleaved into K-GG modified peptides by trypsin. b The direct enrichment of in vivo K-GG
Peptides from samples has been an efficient approach for the large-scale identification of Ub/UBL
conjugation sites
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Later, Du et al. (2009) constructed a ubiquitination-associated enzyme database
plantsUPS, which contains 24 E1, 417 E2s and 7624 E3s from plants. Also, a
similar database of PlantsUBQ was developed for plant Ub enzymes, with 2 E1s, 37
E2s, 1,326 E3s and 51 DUBs (http://plantsubq.genomics.purdue.edu/). Further-
more, the hUbiquitome was released for human ubiquitination, with 1 E1, 12 E2s,
138 E3s, 17 DUBs, 279 substrates and 36 ubiquitination sites (Du et al. 2011). In
addition, by constructing the E3-mediated regulatory networks, Han et al. (2012)
collected 2,201 E3s and 4,896 substrates. The above databases only contains
enzyme information for Ub, while UBL conjugations were not included. Recently,
we developed a comprehensive database Ubiquitin and Ubiquitin-like Conjugation
Database (UUCD) that contains 738 E1s, 2,937 E2s and 46,631 E3s and 6,647
DUBs in 70 eukaryotic species (Gao et al. 2013). Later, Hutchins et al. (2013) also
released a similar database DUDE-db for Ub/UBL conjugations, but only with 267
E1s, 2,095 E2s, 28,985 E3s and 3881 substrates in 50 eukaryotic species.

Additionally, several databases have developed exclusively for Ub/UBL con-
jugation substrates and sites (Table 9.1). The fist database only containing ubiq-
uitinated substrates and sites was UbiProt, which collected 1,104 substrates and
222 ubiquitination sites (Chernorudskiy et al. 2007). The UniProt also contained
substrates and sites for multiple post-translational modifications (PTMs), such as
ubiquitination and sumoylation (Magrane and Consortium 2011). Since rapid
progresses in MS-based proteomics have generated a large number of Ub/UBL
conjugation substrates and sites, collection and integration these data sets will
provide useful resources for further analysis. For example, Li et al. (2009) created
SysPTM that contained modification information for nearly 50 types of PTMs,
including 1,164 ubiquitination sites in 699 substrates. DbPTM 3.0, another PTM
resource, contains 48,781 ubiquitination and sumoylation sites (Lu et al. 2013).
Recently, Hui et al. provided a comprehensive database, including 79,425 mam-
malian ubiquitination sites of 27,272 proteins (http://222.193.31.35:8000/
mUbiSiDa.php). In particular, a UBL conjugation database of PupDB was
developed with 1,305 substrates and 215 pupylation sites (Tung 2012).

9.4 Prediction of Ub/UBL Conjugation Sites

Although more and more Ub/UBL conjugation substrates have been identified,
accurate prediction of conjugation sites is still a great challenge. To date, although
over 20 approaches have been developed for predicting Ub/UBL conjugation sites,
only 13 applicable tools can be accessed (Table 9.2). In Tung and Ho (2008) used
531 physicochemical features and the support vector machines (SVMs) algorithm
to develop the first predictor of UbiPred, with a training data set of 157 known
ubiquitination sites. Using 442 positive sites, Lee et al. (2011) developed UbSite,
which adopted a number of sequence features and the radial basis function net-
works (RBFNs) algorithm for training. Since different organisms may have dif-
ferent features in proteins selected for ubiquitination, the prediction accuracy might
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be improved in organism-specific manner. For example, Radivojac et al. (2010)
collected 265 yeast ubiquitination sites and developed the first organism-specific
predictor of UbPred, with the random forest (RF) algorithm. Also, Chen et al.
(2011) adopted the composition of k-spaced amino acid pairs (CKSAAPs) of
lysine-centered peptides and SVMs algorithm to designed a yeast-specific predictor
of CKSAAP_UbSite, with a training data set of 263 known ubiquitination sites.
Later, they further constructed a human-specific predictor of hCKSAAP_UbSite
with the same approaches (Chen et al. 2013). Recently, Chen et al. (2013) adopted a
number of sequence features and used the SVMs algorithm to develop UbiProber,
which can predict general or organism-specific ubiquitination sites. With the group-
based prediction system (GPS) algorithm, we also developed GPS-ARM for the
prediction of anaphase-promoting complex/cyclosome (APC/C) recognition motifs
including D-box and KEN-box, which can be recognized by Cdh1 or Cdc20 for the
protein degradation (Liu et al. 2012). Thus, the GPS-ARM predicts ubiquitinated
substrates but not exact sites (Liu et al. 2012).

Beyond ubiquitination, there have been a considerable number of efforts taken
for other UBL conjugations, such as sumoylation and pupylation. Because *77 %
of total sumoylation sites follow a canonical motif of W-K-X-D/E (W is a

Table 9.2 Predictors for non- or organism-specific Ub/UBL conjugation substrates and sites

Predictors Training data seta Specificityb Methodc

Ubiquitination
UbiPred 157 ubiquitination sites General SVMs
UbSite 442 ubiquitination sites General RBFNs
UbPred 265 ubiquitination sites in S. cerevisiae S. cerevisiae RF
CKSAAP_UbSite 263 ubiquitination sites in S. cerevisiae S. cerevisiae SVMs
hCKSAAP_UbSite 6118 K sites in human H. sapiens SVMs
UbiProber 25,194 ubiquitination sites in H. sapiens, 5348

in M. musculus and 175 in S. cerevisiae
General and

organism-
specific

SVMs

GPS-ARM 74 D-box and 42 KEN-box motifs General GPS
Sumoylation
SUMOplot N/A General HS
SUMOsp1.0 239 sumoylation sites General GPS
SUMOpre 268 sumoylation sites General SM
SUMOsp2.0 279 sumoylation sites General GPS
seeSUMO 425 sumoylation sites General RF, SVMs
Pupylation
GPS-PUP 127 pupylation sites Prokaryotes GPS

SVMs support vector machines, RBFNs radial basis function networks, RF random forest, GPS
group-based prediction system, HS hydrophobic similarity; SM statistical method
a Training Data Set, the experimentally verified Ub/UBL sites were taken as the positive training
data set
b Specificity, for general propose or organism-specific prediction
c Method, the computational methods used for training
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hydrophobic residue, X is any amino acid) (Xue et al. 2006), the first predictor
SUMOplot was developed by evaluating the hydrophobic similarity between given
proteins and known sumoylation sites (http://www.abgent.com/sumoplot). Later,
using 239 known sumoylation sites as positive samples, we developed SUMOsp1.0
with the GPS algorithm (Xue et al. 2006). With a statistical method, Xu et al. (2008)
developed the SUMOpre, which was trained with 268 known sumoylation sites. In
2009, we greatly improved the GPS algorithm and released the SUMOsp 2.0
software package, with a superior performance than other existing tools (Ren et al.
2009). Recently, Teng et al. (2012) used RF and SVMs algorithms to develop the
seeSUMO for predicting sumoylation sites. In addition, we also developed an
accurate tool of GPS-PUP for the prediction of pupylation sites in prokaryotes (Liu
et al. 2011). Due to the page limitation, the computational predictions of Ub/UBL
conjugation sites without available programs were not summarized.

9.5 Computational Analysis of Disease-Associated Ub/UBL
Conjugations Provides Potential Biomarkers
and Drug Targets

To evaluate the importance of Ub/UBL conjugations in diseases and drug targets,
we mapped Ub/UBL conjugation enzymes to other databases. First, we obtained
874 human Ub/UBL conjugation enzymes from the UUCD database (Gao et al.
2013), 474 known cancer genes from Cancer Gene Census (Forbes et al. 2011) and
4,096 well-characterized drug targets from Drugbank database (Knox et al. 2011).
We mapped cancer genes and drug targets to the human proteomes and got 464
and 2,071 unique sequences, respectively. Also, we mapped all human Ub/UBL
conjugation enzymes to the two data sets, and only identified 27 cancer genes and
16 drug targets. The statistical analyses with a hypergeometric distribution dem-
onstrated that both known cancer genes and drug targets were not significantly
enriched in Ub/UBL conjugation enzymes (p-value [ 0.05). However, we further
mapped all enzymes to the KEGG pathways (Kanehisa et al. 2012), and observed
that Ub/UBL conjugations are significantly involved in a number of essential
pathways (p-value \ 10-4), such as ubiquitin mediated proteolysis (hsa04120),
protein processing in endoplasmic reticulum (hsa04141) and cell cycle (hsa04110)
(Table 9.3). In particular, we revealed that Ub/UBL conjugation enzymes are
over-represented in the pathway of small cell lung cancer (SCLC, hsa05222)
(Table 9.3). Based on the results and KEGG annotations, we illustrated the
pathway, and totally detected 12 E3s, 2 E3 complexes and 4 ubiquitinated sub-
strates (Fig. 9.3). The results also demonstrated that ubiquitination plays an
important role in SCLC-related PI3 K-Akt signaling, cell cycle, apoptosis and p53
signaling pathways (Fig. 9.3). In this regard, Ub/UBL conjugation enzymes and
substrates can be a useful reservoir for further identifying potential biomarkers and
drug targets.
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9.6 Personal Perspectives on Further Computational
Analysis of Ub/UBL Conjugations

In this chapter, we presented a brief summarization of current progresses especially
computational efforts in Ub/UBL conjugations. Totally, there have been 13 online
databases and 13 applicable predictors released for Ub/UBL conjugations. As more
and more conjugation substrates and sites have been identified, we believed that
more and more databases and tools will be developed in the near future. For further
computational studies, we provided several personal perspectives as below:

1. Prediction of conjugation sites for more UBLs. Currently, most computational
predictions were focused on ubiquitination and sumoylation, or in a less extent,
pupylation. However, over ten UBLs have been characterized, while a number of
proteomic analyses of substrates for these UBLs, such as Nedd8-mediated ned-
dylation (Jones et al. 2008) and ISG15-mediated ISGylation (Giannakopoulos
et al. 2005). The development of efficient algorithms and predictors can generate
useful information for further experimental considerations.

2. Prediction of ubiquitinated substrates and sites in an E3-specific mode. For
ubiquitination, the E3 ligases determined the specificity for substrate

Fig. 9.3 The small cell lung cancer pathway (SCLC, hsa05222) adapted from the KEGG
database. The known E3s were shown in red, whereas experimentally identified ubiquitinated
substrates were shown in blue
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recognition. Analogous to phosphorylation which can be catalyzed by *520
kinases, there were 874 human Ub/UBL conjugation enzymes collected in the
UUCD database (Gao et al. 2013). Because different kinases recognize different
motifs for modification, we developed a kinase-specific predictor of GPS for
the phosphorylation (Xue et al. 2005, 2008). Again, because different E3 ligases
exhibited dramatically different sequence or structure profiles, it can be
expected that different E3s can recognize distinct motifs for conjugations. In
this regard, prediction of E3-specific ubiquitinated substrates and sites will
achieve much better performance.

3. Re-construction of Ub/UBL-associated networks. Protein substrates can be
modified by E1s, E2s, and E3s and de-modified by DUBs. Thus, the complex
relations among Ub/UBL conjugation enzymes and substrates constitute the
Ub/UBL-associated networks, which are fundamental for systematically
understanding the molecular mechanisms and regulatory roles of Ub/UBL
conjugations. Also, how to retrieve useful information from the networks will
be a great challenge.

9.7 Conclusion

As a class of important and ubiquitous PTMs, Ub/UBL conjugations has attracted
more and more attention to be potential biomarkers or drug targets. Besides both
small- or large-scale experimental identifications, computational analysis of Ub/
UBL conjugations has also emerged to a promising topic. However, the number of
either databases or predictors for Ub/UBL conjugations is still limited, and more
efforts should be paid in this field. We believed a better study will generate a
deeper understanding on Ub/UBL conjugations and provide useful information for
biomedical design.
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