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Abstract 

Large-scale sequencing has characterized an enormous number of genetic variations (GVs), 

and the functional analysis of GVs is fundamental to understanding differences in disease 

susceptibility and therapeutic response among and within populations. Using a combination of a 

sequence-based predictor with known phosphorylation and protein－protein interaction information, 

we computationally detected 9606 potential phosSNPs (phosphorylation-related single nucleotide 

polymorphisms), including 720 known, disease-associated SNPs that dramatically modify the human 

phosSNP-associated kinase－substratekinase－substrate network. Further analyses demonstrated 

that the proteins in the network are heavily associated in various signaling and cancer pathways, 

while cancer genes and drug targets are significantly enriched. We re-constructed four 

population-specific kinase－substrate networks and found that several inherited disease or cancer 

genes, such as IRS1, RAF1, and EGFR, were differentially regulated by phosSNPs. Thus, 

phosSNPs may influence disease susceptibility and be involved in cancer development by 

reconfiguring phosphorylation networks in different populations. Moreover, by systematically 

characterizing potential phosphorylation-related cancer mutations (phosCMs) in 12 types of cancers, 

we observed that both types of GVs preferentially occur in the known cancer genes, while a 

considerable number of phosphorylated proteins, especially those over-representing cancer genes, 

contain both phosSNPs and phosCMs. Furthermore, it was observed that phosSNPs were 

significantly enriched in amplification genes identified from breast cancers and tyrosine kinase 

circuits of lung cancers. Taken together, these results should prove helpful for further elucidation of 

the functional impacts of disease-associated SNPs. 

 

Keywords: genetic variation, nsSNP, phosSNP, phosphorylation, phosSNP-associated kinase－

substrate network 
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Introduction 

In the post-genomic era, the large-scale identification of human genetic variations (GVs) is 

critically important for an understanding of the differences in both the susceptibility to diseases and 

response to therapeutic treatment (Manolio et al., 2008; Ren et al., 2010; Gunther et al., 2011; 

Gonzaga-Jauregui et al., 2012). After over a decade of effort, the HapMap Project, the 1000 

Genomes Project, Cancer Genome Project, and other similar projects have identified an enormous 

number of individual GVs, such as germline single nucleotide polymorphisms (SNPs), somatic 

mutations and structural variants (Greenman et al., 2007; Manolio et al., 2008; 1000 Genomes 

Project Consortium, 2010; Forbes et al., 2010). Although most GVs may be incidental and not alter 

gene function (Collins et al., 1998), genome-wide association (GWA) studies have recently detected 

tens of thousands of GVs that are associated with a variety of diseases (Manolio et al., 2008; 

Stenson et al., 2009; Li et al., 2012b). SNPs in the coding region (cSNPs), especially 

non-synonymous SNPs (nsSNPs), are significantly associated with certain specific phenotypes and 

diseases (Cargill et al., 1999; Gunther et al., 2011). Additionally, a considerable proportion of somatic 

mutations have been predicted to be “cancer drivers” that advance disease progression (Greenman 

et al., 2007; Carter et al., 2009; Vandin et al., 2012; Reimand and Bader, 2013). In this regard, 

characterizing the functional consequences of GVs is of critical importance to understand individual 

genetic differences, thus supporting the concept of “personalized medicine” (Ren et al., 2010; 

Gonzaga-Jauregui et al., 2012).  

It is well documented that nsSNPs generate deleterious effects by modifying protein 

structural conformation (Reumers et al., 2006; Yue and Moult, 2006). However, nsSNPs also 

influence the post-translational modifications (PTMs) of proteins (Savas and Ozcelik, 2005; Erxleben 

et al., 2006; Gentile et al., 2008; Radivojac et al., 2008; Yang et al., 2008a; Ryu et al., 2009; Li et al., 

2010). For example, Savas and Ozcelik (2005) predicted that 15 nsSNPs potentially create or 

remove phosphorylation sites in cell-cycle and DNA repair proteins.The Armstrong group first 

suggested the concept of aberrant phosphorylation or “phosphorylopathy” caused by GVs in 2006 

(Erxleben et al., 2006) and predicted 16 phosphorylopathies in human ion channel genes (Gentile et 

al., 2008). One of the predicted results, a K897T nsSNP in the human ether-a-gogo-related gene 1 

(hERG1), was experimentally shown to generate a novel Akt phosphorylation site that inhibited 
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channel activity (Gentile et al., 2008). Subsequently, Yang et al. (2008a) mapped cSNPs to flanking 

regions of known phosphorylation sites and proposed that 64 of them were potentially disrupted by 

nsSNPs. Recently, systematic analysis of inherited disease- or cancer-associated GVs that 

potentially alter protein phosphorylation has emerged as an important undertaking (Radivojac et al., 

2008; Ryu et al., 2009; Li et al., 2010; Reimand and Bader, 2013). Ryu et al. (2009) predicted that 

both nsSNPs and somatic mutations are implicated in various cancers and inherited diseases by 

changing phosphorylation. Also, Radivojac et al. (2008) showed that phosphorylation-associated 

mutations are significantly enriched in cancers and inherited diseases compared with germline 

nsSNPs, and further observed that loss of PTM sites might be an important mechanism in these 

diseases (Li et al., 2010). Furthermore, Liu et al. (2013) found that a cancer-patient-derived mutation 

R81T on Sin1 impairs the Sin1 phosphorylation, which leads to the hyper-activation of mTORC2 and 

facilitates tumorigenesis. In addition, Reimand and Bader (2013) developed a statistical approach 

termed ActiveDriver, and predicted 44 potential cancer driver genes with significant 

phosphorylation-associated single-nucleotide variants (pSNVs) from nine cancer data sets. Taken 

together, these studies showed that GVs, such as mutations and SNPs, might contribute to the 

development of cancers or inherited diseases through the reconfiguration of phosphorylation 

signaling. 

Previously, we defined phosSNP (phosphorylation-related SNP) as an nsSNP that influences 

the protein phosphorylation state (Ren et al., 2010), with the concurrence of Dr David L. Armstrong in 

the form of personal communications. Using the kinase-specific predictor of GPS 2.0 (Xue et al., 

2008), we directly predicted phosphorylation sites in both original and nsSNP-containing sequences 

(Ren et al., 2010). By comparison of the prediction results, we identified a total of ~70% of the 

nsSNPs as potential phosSNPs. However, because only a small proportion of serine, threonine, and 

tyrosine residues can be phosphorylated in vivo, ab initio prediction of phosphorylation sites merely 

from primary sequences is error-prone. Thus, more filters are needed to be included to reduce the 

false positive predictions. 

In this work, we first predicted the exact kinase information for the original and 

nsSNP-containing protein sequences by manually forming links of the 407 human kinases with their 

corresponding predictors in GPS 2.1 (Song et al., 2012). To improve the accuracy of this process, we 

only considered potential phosSNPs that change known phosphorylation sites, using experimentally 
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identified phosphorylation sites as a highly efficient filter. Because the short motifs around 

phosphorylation sites do not provide full recognition specificity for kinases in vivo, the protein－

protein interactions (PPIs) between kinases and substrates were adopted as an additional filter to 

remove false positive hits. With this procedure, a total of 9606 potential phosSNPs in 7946 proteins 

were identified with a high degree of confidence. Then we re-constructed the human 

phosSNP-associated kinase－substrate phosphorylation network and found the network topology to 

be dramatically changed by phosSNPs. Also, cancer genes and drug targets were significantly 

over-represented in the network, with the proteins in the network being heavily implicated in a 

number of signaling and cancer pathways. Furthermore, we observed that the known inherited 

disease- or cancer-associated mutations were significantly over-represented in the predicted 

phosSNPs, with a two-fold enrichment. The strong relation between phosSNPs and diseases 

suggested that phosSNPs may be associated with human disease by reconfiguring the 

phosphorylation network. Moreover, a number of disease- or cancer-associated genes were found to 

be differentially regulated by phosSNPs in different populations. Thus, phosSNPs may influence 

disease and cancer susceptibility by differentially altering the phosphorylation networks in different 

populations in different regions. In addition, we further systematically analyzed 

phosphorylation-related cancer mutations (phosCMs) in 12 types of cancer samples. Although both 

phosCMs and phosSNPs significantly occur more frequently in cancer genes, the known cancer 

genes were found to be significantly over-represented in phosSNP-containing proteins in most types 

of cancers. Thus, our results suggest that phosSNPs, along with phosCMs, may be involved in 

driving cancer progression. Taken together, our results provide help for further experimental analysis 

of the molecular mechanisms of known disease-associated phosSNPs as well as new leads for 

personalized medicine. 
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Results 

Systematic characterization of phosSNPs with a high degree of confidence 

In this work, three major improvements were introduced to improve the prediction accuracy of 

human phosSNPs (Figure 1). First, GPS 2.1 hierarchically clustered homologous kinases into the 

categories of group, family, and subfamily, but did not predict the exact kinase information for a given 

residue (Xue et al., 2011). Previously, we manually selected 407 human kinases for 56 

serine/threonine kinase (STK) and 21 tyrosine kinase (TK) specific predictors (Song et al., 2012). 

Thus, from 1060070 nsSNPs, we directly predicted raw phosSNPs that exhibited changed 

phosphorylation patterns because of specific kinases (Figure 1). Second, PhosSNP 1.0 contained 

too many results, most phosphorylation sites of which were ab initio predicted merely from the 

primary sequences (Ren et al., 2010). Since recent phosphoproteomic experiments have identified 

ten thousands of phosphorylation sites (Song et al., 2012), this information was used to filter out the 

false positive hits (Figure 1). As previously described, we defined a phosphorylation site peptide 

PSP(15, 15) as a phosphorylation site flanked by 15 residues upstream and 15 residues 

downstream (Ren et al., 2010; Xue et al., 2011). We retrieved all PSP(15, 15) items from the 

phosphorylation data set, and exactly mapped them to the original and mutated RefSeq proteins, 

respectively. The PSP(15, 15) items that could not be mapped to any SNP were discarded. Then for 

a specific SNP, the phosphorylation states of original and mutated PSP(15, 15) were further 

compared. We considered a SNP as a phosSNP only if it could induce the phosphorylation change 

of the PSP(15, 15), such as creating or abolishing the phosphorylation site, or changing the kinase 

type of the phosphorylation site (Figure 1). Previously, our analyses suggested that the physical 

interaction between a kinase and a substrate efficiently improves the prediction accuracy of 

site-specific kinase－substrate relations (ssKSRs) (Song et al., 2012). Thus, both experimentally 

identified and pre-predicted PPIs (Exp. & STRING PPIs) were used as an additional filter. We only 

preserved phosSNPs that change the ssKSRs supported by the PPI information (Figure 1). These 

phosSNPs were classified into different types based on the definitions. In total, we computationally 

identified 9606 phosSNPs in 7946 RefSeq sequences (Figure 1).  

In the absence of any filters, approximately 57.2% of the total nsSNPs (606321/1060070) 

were predicted to be phosSNPs by GPS 2.1 (Table 1). This result is moderately lower than the one in 

 at H
uazhong U

niversity of Science and T
echnology on February 27, 2015

http://jm
cb.oxfordjournals.org/

D
ow

nloaded from
 

http://jmcb.oxfordjournals.org/


7 

our previous analysis (Ren et al., 2010). When known phosphorylation information was considered, 

only 40344 nsSNPs (~3.8%) were predicted to be phosSNPs (Table 1). Thus, it is evident that a 

large proportion of potentially false positive hits were filtered out. The predicted number was further 

reduced to 9606 (Exp. & STRING PPI, 0.91%) and 2496 (Exp. PPI, 0.24%) using the different PPI 

data sets (Table 1). Because the Exp. PPI filter was too stringent and only a small number of hits 

were predicted, we used the predicted results obtained with Exp. & STRING PPI as the core data set 

for further analyses. 

 

PhosSNPs dramatically reconfigures the human kinase－substrate phosphorylation network 

Kinases can phosphorylate substrates and be also modified by other kinases. Thus, a kinase

－substrate phosphorylation network can be re-constructed from ssKSRs between kinases and 

substrates (Song et al., 2012). Because site-specific phosphorylation is the result of upstream 

regulatory kinases (Nilsson, 2012), phosSNPs reconfigure the human kinase－substrate network by 

either creating new or disrupting the original ssKSRs. However, because a substrate can be 

phosphorylated by a kinase at multiple sites, adding or removing one ssKSR does not disrupt the 

kinase－substrate relation (KSR) if multiple ssKSRs exist. In this regard, the impact of phosSNPs on 

the kinase－substrate network is classifiable into four types: (i) Added (+), one or multiple new 

ssKSRs were introduced into an unrelated kinase－substrate pairing; (ii) Removed (-), all existing 

ssKSRs in a kinase－substrate pair were disrupted; (iii) Changed (C), the KSR was not changed by 

either adding or removing one or multiple ssKSRs; (iv) Unchanged (N), all the ssKSRs were identical 

in the original and mutated proteins.  

By comparing the predicted ssKSRs for the original and mutated proteins, we constructed a 

phosSNP-associated kinase－substrate phosphorylation network with 18056 KSRs for 374 kinases 

and 2270 substrates (Figure 2). For further comparison and analysis, the KSRs of both original and 

mutated proteins were integrated and visualized as a single network (Figure 2). It should be noted 

that 154 (~41.2%) predicted kinases did not have any phosSNPs in the network. However, their 

functions can still be influenced, because phosSNPs change their substrate profiles by reconfiguring 

the ssKSRs between these non-mutated kinases and substrates (Figure 2). In this regard, all 

proteins in the phosSNP-associated kinase－substrate network were taken together for further 

analysis.  
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From the network results, it is evident that a considerable proportion of KSRs were added 

(2989, ~16.6%) or removed (4322, ~23.9%) by phosSNPs (Figure 2). Also, although the KSRs were 

retained, a number of KSRs (6582, ~36.5%) were changed by adding or removing ssKSRs (Figure 

2). Only a proportion of KSRs (4163, ~23.1%) were not influenced (Figure 2). In addition, statistical 

analysis suggested that the topological features of the kinase－substrate phosphorylation networks 

for the original and mutated proteins were significantly different (Table 2). Taken together, the results 

indicate that the human kinase－substrate network was dramatically reconfigured by the phosSNPs. 

 

The phosSNP-associated kinase－substrate network is highly associated with various cancers 

In a network, highly connected genes, known as hubs, usually play central roles in mediating 

the signal communication or exchange in multiple pathways (Jin et al., 2007; Wang et al., 2007; 

Zaman et al., 2013). From the phosSNP-associated kinase－substrate network, the top 10 

substrates (Figure 3A) and kinases (Figure 3B) with most KSRs were shown, respectively. If the 

substrates are also kinases, only directed KSRs from other kinases to these kinases were 

considered. These genes act as hubs in the network, and their functions might be greatly influenced 

by the reconfiguration of KSRs. For example, EGFR, the substrate with the most KSRs, was 

implicated in signaling transduction from extracellular into appropriate cellular responses including 

regulated growth, proliferation, and survival (Hochgrafe et al., 2010) (Figure 3A). Previously, a 

structural modeling study suggested that a SNP of rs17290699 might disrupt the hydrogen and ion 

bonds between H988 and E690, and further influence EGFR dimer formation (Choura et al., 2010). 

Also, IRS1 is a signaling adapter involved in biological processes such as apoptosis, cell growth, and 

cell transformation through the regulation of insulin signaling (Chang et al., 2002) (Figure 3A), while 

mutations in IRS1 have been reported to be implicated in diabetes mellitus type 2 and cancers 

(Stenson et al., 2009; Hochgrafe et al., 2010). Among top 10 kinases, AKT1, which has the most 

KSRs, regulates various processes including metabolism, proliferation, and angiogenesis (Figure 

3B). The aberrant signaling of AKT was involved in a variety of complex diseases (Manning and 

Cantley, 2007). Taken together, the KSRs of hub genes were preferentially changed by phosSNPs, 

which may contribute to the reconfiguration of signaling pathways and further contribute to the 

cancers or other diseases. 

In addition, we found that 199 (~7.5%) and 219 (~8.3%) genes of the network are cancer 
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genes, using the different cancer gene data sets (Figure 3C). Nearly 20% of the network proteins are 

drug targets (Figure 3C). With the hypergeometric distribution, the statistical results suggested that 

both the cancer genes and drug targets are significantly enriched in the phosSNP-associated kinase

－substrate network (Figure 3C, p-value << 0.01). Although the protein kinases are known to be 

highly associated with cancer (Haber and Settleman, 2007), excluding the kinases from the 

phosSNP-associated kinase－substrate network still resulted in a strong correlation between the 

phosSNP-containing proteins and cancer genes or drug targets (Supplementary Table S1, p-value 

<< 0.01). Previously, using a combination of the sequence-based predictions and the PPI 

information, we predicted a total of 192756 ssKSRs at 25962 human phosphorylation sites, and 

constructed a human protein phosphorylation network (PPN) among 380 kinases and 4140 

substrates (Song et al., 2012). Indeed, cancer genes and drug targets were shown to be significantly 

enriched in the PPN against the human proteome (p-value << 0.01), probably because the 

phosphorylation is highly involved in a variety of signaling processes and highly associated with 

cancers and diseases. However, using the human PPN as the background, it is evident that 

phosSNPs are able to further enrich cancer genes (Figure 3D, p-value < 0.01).  

We statistically analyzed the distribution and diversity of Gene Ontology (GO) terms for 

proteins in the phosSNP-associated kinase－substrate network with the hypergeometric distribution 

(p-value < 1E-15). The results suggest that network proteins are significantly over-represented in a 

broad spectrum of biological processes and functions, such as protein phosphorylation, signal 

transduction, and apoptotic processes (Supplementary Table S2). Also, by mapping network 

proteins to the pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG), the statistical 

results indicated that these proteins were significantly associated with a number of cancer pathways, 

such as pathways in cancer (p-value = 5.69E-23), chronic myeloid leukemia (p-value = 7.56E-23), 

glioma (p-value = 3.07E-18), and prostate cancer (p-value = 2.30E-17) (Table 3). Again, we 

observed that cancer-associated pathways were still significantly enriched even after excluding 

protein kinases from the network proteins (Supplementary Table S3). Moreover, the statistical 

enrichment analysis of the Disease Ontology (DO) terms suggested that network proteins were 

significantly enriched in a number of diseases and cancers (Supplementary Table S4). In particular, 

the top 3 most significant DO terms were cancer (p-value = 2.53E-146), breast cancer (p-value = 

1.8E-60), and prostate cancer (p-value = 1.31E-47) (Supplementary Table S4). In addition, the 
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protein complexes were computed from the network by MCODE v1.32 in Cytoscape (Bader and 

Hogue, 2003). The enrichment analysis of the KEGG pathways was performed for the proteins in 

each of the complexes (Supplementary Table S5). The top 4 complexes with the highest scores were 

shown, with three of them associated with cancers (Supplementary Figure S1). Taken together, 

several lines of evidence suggest that the proteins in the human phosSNP-associated kinase－

substrate network are highly associated with cancer. 

 

PhosSNPs are associated with known human diseases 

We classified all predicted phosSNPs into four types (I, II, III, and IV) (Table 1), and several 

typical examples are shown in Figure 4. In total, it was found that up to 720 unique phosSNPs 

(~7.4%) were included in the ClinVar, a public resource of relations among GVs and human 

phenotypes (Landrum et al., 2014). With the hypergeometric distribution, the p-value was calculated 

to be 1.19E-81 (the enrichment ratio = 2.18), which suggests that phosSNPs are significantly 

involved in human diseases (Supplementary Table S6). In our results, the G691S nsSNP (rs1799939) 

in RET was reported to be associated with primary vesicoureteral reflux (pVUR) in the Quebec 

patients by removing the S691 phosphorylation site (Yang et al., 2008b). Here, we predicted it as a 

Type I (+) phosSNP to generate a new phosphorylation site for PKCA (Figure 4A). Also, it is known 

that NF-κB inhibitor α (NFKBIA) is phosphorylated by the IκB kinase at S32, while an S32I nsSNP 

(rs28933100) removes the phosphorylation site and enhances its inhibitory activity that is associated 

with autosomal-dominant ectodermal dysplasia with immunodeficiency (AD-EDA-ID) (Courtois et al., 

2003). Consistent with the experimental observation (Courtois et al., 2003), we predicted it to be a 

Type I (-) phosSNP that removes the S32 phosphorylation site of IKKB (Figure 4B). By mapping the 

prediction results to the GWASdb (Li et al., 2012b), we also observed that 10 non-redundant 

phosSNPs in 10 genes are significantly associated with human diseases (Table 4). For example, 

MLXIPL, a carbohydrate-responsive element-binding protein, was previously identified as being 

associated with metabolic disorders, with an nsSNP of A358V (rs35332062) (Kettunen et al., 2012). 

Here, we predicted it to be a Type II (-) phosSNP as the result of inhibiting the PKACA-mediated 

phosphorylation at S361 (Figure 4D). The predictions for BCL10 (Figure 4C), SPTBN1 (Figure 4E), 

and EGFR (Figure 4F) still remain to be validated. Taken together, phosSNPs are highly associated 

with human diseases and useful for further experimental investigation. 

 at H
uazhong U

niversity of Science and T
echnology on February 27, 2015

http://jm
cb.oxfordjournals.org/

D
ow

nloaded from
 

http://jmcb.oxfordjournals.org/


11 

 

PhosSNPs differentially reconfigure the phosphorylation network in different populations 

By directly mapping, 1320 predicted phosSNPs were detected from the 1000 Genomes 

Project (Supplementary Table S7). Based on the allele frequency information, we first constructed 

four population-specific phosSNP-associated kinase－ substrate networks for the Ad Mixed 

American (AMR), East Asian (ASN), African (AFR), and European (EUR), respectively (Table 5 and 

Supplementary Figure S2). PhosSNPs without any information on the allele frequencies were not 

considered in any network. In the four networks, there were 1525－2368 KSRs among 286－303 

kinases and 265－392 non-kinase substrates (Table 5). Also, nearly half of the kinases in these 

networks were predicted not having any phosSNPs. This result is similar with to that from the 

analysis for the integrative phosSNP-associated kinase－substrate networks. In particular, only a 

limited proportion of KSRs (34.9%－38.0%) were not influenced (Table 5). By statistically analyzing 

the MCC and degree distributions for the original and mutated proteins, we observed that phosSNPs 

dramatically altered all population-specific networks (p-value << 0.01, Wilcoxon signed-rank test, 

Table 5).  

To test whether phosSNPs differentially influenced the phosphorylation networks in different 

populations, we calculated the network proteins in a pairwise manner for the KSRs among the four 

networks. With Yates' chi-squared test, the KSRs of 30 proteins were determined significantly 

different in at least a pair of populations (Supplementary Table S8, p-value < 0.01), with the results 

shown in Table 6 (p-value < 1E-4). In our results, the gene with the greatest number of different 

KSRs is IRS1 (insulin receptor substrate 1) between the populations of AFR and EUR (Table 6, 

p-value = 3.74E-14). The KSRs of IRS1 are also differentially present for AMR-EUR (p-value = 

1.42E-08), AFR-ASN (p-value = 6.54E-08), and AMR-ASN (p-value = 4.76E-04) (Table 6 and 

Supplementary Table S8). As a known drug target (Reimand and Bader, 2013), IRS1 plays a critical 

role in apoptosis, cell growth, and cell transformation by regulating insulin signaling (Chang et al., 

2002), and a number of mutations in IRS1 have been shown to be associated with diabetes mellitus 

type 2 or noninsulin-dependent diabetes mellitus (NIDDM) from the ClinVar annotations (Landrum et 

al., 2014). From the SNPs of the 1000 Genomes Project, we predicted up to 9 nsSNPs in IRS1 to be 

phosSNPs (Supplementary Table S7). The two phosSNPs, rs148962208 (P1079S, allele frequency: 

0.01 in ASN) and rs1801276 (A512P, allele frequency: 0.002 in AFR; 0.02 in EUR) (Supplementary 
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Table S7), were annotated as diabetes-associated mutations (Supplementary Table S6). The former 

phosSNP, rs148962208, was first identified in a Chinese population and the authors suggested that 

the hydrophobic to hydrophilic substitution of P1079S may impair the function of IRS1 by inducing a 

conformational change of its 3D structure (Zeng et al., 2000). However, our results predicted 

rs148962208 to be a Type II (-) phosSNP that potentially changes the phosphorylation motif pS-P 

into pS-S and disrupts the phosphorylation of its adjacent site S1078 by mTOR and CDK5. Because 

this SNP was not detected in other populations (Supplementary Table S7), its effect on IRS1 

phosphorylation might be exclusive to the ASN population. The second phosSNP, rs1801276, was 

mainly identified in the EUR population, such as Danish and French Caucasians (Celi et al., 2000). It 

was proposed that the A512P SNP alters the secondary structure of IRS1 by disrupting the α-helix 

formation (Celi et al., 2000), whereas our predictions suggested that A512P inhibits the adjacent 

phosphorylation status of S503. 

In addition, the well-characterized cancer gene EGFR was predicted to be differentially 

regulated by phosSNPs in different pairs of populations (Table 5). Interestingly, a structural modeling 

study suggested that rs17290699 (H988P, allele frequency: 0.03 in EUR, Supplementary Table S7) 

may influence EGFR dimer formation by disrupting the hydrogen and ion bonds between H988 and 

E690 (Choura et al., 2010). However, our results indicate that the SNP may also induce the 

phosphorylation of the adjacent S991 site that is potentially modified by MAPKs. Taken together, 

although in previous studies, the functional effect of nsSNPs has usually been attributed to their 

influence on protein structure, our results suggest that they also influence inherited diseases as well 

as cancer susceptibility by reconfiguring phosphorylation networks. 

 

PhosSNPs as well as phosCMs may be involved in driving cancer progression 

To investigate whether phosSNPs are involved in driving cancer progression, we 

systematically analyzed missense cancer mutations (CMs) in 12 types of cancers, including uterine 

corpus endometrial carcinoma (UCEC-US), colon adenocarcinoma (COAD-US), lung squamous cell 

carcinoma (LUSC-US), acute myeloid leukemia (LAML-KR), breast cancer (BRCA-US), rectum 

adenocarcinoma (READ-US), kidney renal clear cell carcinoma (KIRC-US), liver cancer (LINC-JP), 

brain glioblastoma multiforme (GBM-US), ovarian serous cystadenocarcinoma (OV-US), breast triple 

negative/lobular cancer (BRCA-UK), and pancreatic cancer (PACA-CA). Using the human proteome 
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as the background, we observed that known cancer genes (from the Cancer Gene Census) were 

significantly enriched in missense CM-containing proteins for all cancer types (Figure 5, p-value < 

0.05). In particular, approximately 400 cancer genes were found to be mutated in the UCEC-US 

samples, and even in PACA-CA, there were still ~100 mutated cancer genes (Figure 5). Thus, the 

results supported the hypothesis that missense CMs can be “hotspots” of mutations that are drivers 

of cancer (Greenman et al., 2007; Haber and Settleman, 2007; Carter et al., 2009). Furthermore, by 

predicting potential phosCMs from missense CMs, we demonstrated that phosCM-containing 

proteins significantly enrich cancer genes, although different levels of significance were observed in 

different cancer types (Figure 5). For example, the p-value of the cancer genes over-represented in 

phosCM-containing proteins is < 1E-20 in UCEC-US, but only <0.05 in LUSC-US, LAML-KR, 

READ-US, GBM-US, OV-US, BRCA-UK, and PACA-CA (Figure 5). In this regard, our analyses 

suggest that mutated phosphorylation signaling pathways are involved in cancer progression 

(Reimand and Bader, 2013) and predicted phosCMs to be novel cancer drivers.  

Interestingly, the comparison of population-specific phosSNPs and cancer type-specific 

phosCMs demonstrated that the p-values are more stringent in PhosSNP-containing proteins in the 

case of enriched cancer genes (Figure 5). It is only in UCEC-US and COAD-US that the number of 

the enriched cancer genes of phosCMs is greater than phosSNPs (Figure 5). Thus, these statistical 

analyses suggest that phosSNPs might also be involved in driving cancer progression. Moreover, we 

re-constructed the kinase－substrate network containing the regulatory kinases as well as the 

phosSNP- and phosCM-containing proteins for each cancer type based on the predicted KSRs 

(Figure 6). Clearly, these proteins are tightly connected in the networks, and there are a considerable 

proportion of substrates containing both phosSNPs and phosCMs (Figure 6). In addition, by 

comparing phosSNP- and phosCM-containing proteins, we found that many cancer genes contained 

both genetic variations (Supplementary Figure S3). Taken together, distinguishing phosSNP- and 

phosCM-containing proteins from the kinase－substrate networks is difficult, and our results suggest 

that both phosSNPs and phosCMs have a potential role in driving cancer progression.  
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PhosSNPs were significantly enriched in cancer-related amplification genes and tyrosine kinase 

circuits 

Among various types of GVs, DNA copy number variations (CNVs) were frequently observed 

in a variety of tumors, and were considered to be involved in tumor evolution by altering the gene 

expression profile (Albertson, 2006). To investigate the potential role of GVs that “drive” the cancer 

development in different subtypes, Zaman et al. (2013) integrated a variety of distinct GVs including 

CNVs and missense mutations, and constructed cell line-specific survival networks in 16 specific 

breast cancer cell lines. Using the network approach, they revealed that the gene amplification 

functions as a part of driving regulators to affect different essential genes in different cancer cell lines. 

In this study, we tried to dissect the relationships between phosSNPs and gene amplifications. 

Based upon the previous rationales (Zaman et al., 2013), we obtained CNV data and gene 

expression information for 59 breast cancer tissues from Cancer Cell Line Encyclopedia (CCLE). 

The Genomic Identification of Significant Targets in Cancer (GISTIC 2.0) was used to calculate the 

G-scores for each gene (Mermel et al., 2011). As previously described (Mermel et al., 2011; Zaman 

et al., 2013), we only considered the amplified genes with G-score > 0.3 and expression level among 

top 50% in each cell line. Finally, we obtained 3409 amplified genes in 59 breast cancer cell lines, 

with 535 amplified genes containing phosSNPs. Using the human proteome as the background, the 

hypergeometric distribution based statistical analysis showed that the phosSNPs were significantly 

enriched in amplified genes of breast cancers (E-ratio = 1.78, p-value = 9.54E-45). This result 

demonstrate that genes with phosSNPs might have a relatively higher probability to be amplified in 

cancers. 

In the phosSNP-associated kinase－substrate network, we observed that ~28.1% (5081 out 

of 18056 interactions) of KSRs belong to protein tyrosine kinase signaling. Among all TK signaling 

events, ~73.1% (3716 out of 5081 TK interactions) of KSRs were found to be influenced by 

phosSNPs, which demonstrated that the TK signaling was more likely to be associated with 

phosSNPs. Recently, Li et al. (2012a) performed systematic analyses on protein tyrosine signaling 

network in cancers. The results showed that cancer signaling preferentially employs 

phosphotyrosine (pTyr) substrates that contain kinase domains or SH2/PTB domains and pTyr sites 

that were detected in more tumor samples. In this regard, we tried to explore whether phosSNPs 

could influence the TK signaling in cancers. To address this question, we mapped the phosSNPs into 
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the dataset of TK circuits from lung cancers (Li et al., 2012a). While a TK circuit contains three parts 

including pTyr site, tyrosine kinase, and SH2/PTB protein, only TK circuits with phosSNP-influenced 

KSRs were reserved for further analysis. 

Finally, we obtained 344 lung cancer-related TK circuits that were influenced by phosSNPs 

(Supplementary Table S10). Among the 344 TK circuits, 228 TK circuits were mediated by high 

frequency cancer (HFC) pTyr sites that were detected in more than one cancer samples. The other 

116 TK circuits were linked to low frequency cancer (LFC) pTyr sites that were detected in only one 

cancer sample (Supplementary Table S10). The statistical analysis revealed that phosSNPs were 

significantly associated with TK circuits that linked to HFC pTyr sites rather than LFC pTyr sites 

(E-ratio =2.58, p-value = 4.52E-17; Yates' chi-squared test). Furthermore, Li et al. (2012a) have 

defined two types of pTyr substrates, dual-role substrates (DRSs) and single-role substrates (SRSs), 

based on the existence of one or multiple kinase domains or SH2/PTB domains in a substrate. The 

statistical analysis revealed that the HFC pTyr sites are significantly more enriched in DRSs than 

SRSs in lung cancers (Li et al., 2012a). Here, we also studied whether the phosSNPs are associated 

with DRSs or SRSs in lung cancers. Among HFC TK circuits, we obtained 88 TK circuits with DRSs 

and 140 TK circuits with SRSs (Supplementary Table S10). Statistical analysis demonstrated that 

phosSNPs preferentially occurred in DRS-containing TK circuits (E-ratio = 3.99, p-value = 2.16E-24; 

Yates' chi-squared test). This could be explained that proteins with multiple kinase domains or 

SH2/PTB domains were commonly involved in signaling pathway, while phosSNPs might alter the 

phosphorylation states of the substrates, rewire the phosphorylation signaling, and further affect the 

cancer susceptibility. 
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Discussion 

Reversible phosphorylation plays an essential role in almost all biological processes and 

pathways. Recently, the rapid progress in phosphoproteomics using high-throughput mass 

spectrometry (HTP-MS) has enabled the identification of thousands of phosphorylated substrates 

from one sample (Olsen et al., 2006; Macek et al., 2009; Nilsson, 2012). Thus, an efficient means of 

retrieving useful information from the flood of data has emerged as a critical goal. In particular, 

systematic analysis of the phosphoproteomic data in the context of genetic content would advance 

our understanding of the molecular mechanisms and regulatory processes underlying 

phosphorylation, including that takes place in individual populations. At the same time, genomic 

studies with next-generation DNA sequencing (NGS) techniques have characterized an extremely 

large number of germline SNPs and somatic mutations (Greenman et al., 2007; Manolio et al., 2008; 

1000 Genomes Project Consortium, 2010; Forbes et al., 2010). Systematic analysis of the GVs that 

reconfigure the phosphorylation network will form a link between phosphoproteomics and genomics, 

and thus will be helpful for understanding how GVs determine both disease susceptibility and 

therapeutic response in different populations.  

Based on the hypothesis that the phosphorylation-associated mutation rate is significantly 

different to the gene-wide mutation rate, Reimand and Bader (2013) developed a gene-centric 

algorithm and identified 44 genes with unexpected pSNVs, including 15 known cancer genes, that 

locate in the kinase domains or flanking regions of phosphorylation sites. However, this statistical 

model is not applicable to the analysis of phosSNPs, because the mutation rate is difficult to 

calculate from SNP data sets. Also, SNVs located in the flanking regions of phosphorylation sites 

may only rarely change the phosphorylation status. For example, we observed that 1049291 

nsSNPs located in at least one PSP(15, 15) region. However, only 9606 (~0.9%) of these nsSNPs 

were predicted to be potential phosSNPs. Thus, the prediction of exact nsSNPs that influence 

phosphorylation is much more helpful for the purpose of further experimental analysis. Moreover, 

although it is well known that kinase activity can be changed by GVs located in catalytic domains, it 

has remained unclear whether GVs alter the substrate specificity of kinases. In contrast, our results 

suggest that kinase specificity is dramatically changed by phosSNPs in substrates, even without any 

phosSNPs in the kinases (Figure 3B). 
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In this work, we developed a SNP-centric approach by directly predicting 9606 potential 

phosSNPs that change the phosphorylation pattern. To evaluate the prediction accuracy, we 

manually collected 11 experimentally identified phosSNPs from the scientific literature 

(Supplementary Table S9). In the absence of any filters, only sequence-based prediction with GPS 

2.1 predicted all the phosSNPs as positive hits. However, such a prediction is of limited use because 

of the high number of false positive predictions. When the experimental phosphorylation information 

was taken into consideration, seven known phosSNPs were predicted (Supplementary Table S9). 

When the PPI information was added as well, there were still 4 phosSNPs recalled (Supplementary 

Table S9), whereas the number of false positive hits was greatly reduced (Table 1). In this regard, 

although the method is much simpler, without the utilization of any statistical models, the 

performance is still highly valuable. Unexpectedly, known disease-associated SNPs were found to 

be significantly present in these results, with a 2.18-fold enrichment (Supplementary Table S6). 

Based on the predicted phosSNPs, we also constructed a human phosSNP-associated kinase－

substrate network and showed that cancer genes and drug targets were both over-represented. 

Further analysis demonstrated that the proteins in the network are highly involved in a number of 

signaling and cancer pathways. For example, there are 79 genes in the cancer pathway of chronic 

myeloid leukemia (KEGG ID: hsa05220), with 56 of them included in the phosSNP-associated 

network (Figure 7). Thus, the cancer pathways can be dramatically altered by phosSNPs. In 

particular, we observed that a number of disease- or cancer-associated genes were differentially 

regulated by phosSNPs in different populations. Thus, phosSNPs may influence inherited disease or 

cancer susceptibility by reconfiguring the phosphorylation networks in different populations.  

Recently, the identification of potential “driver” mutations from the cancer genome 

sequencing data has emerged as an important topic. It is believed that a considerable proportion of 

somatic mutations are able to contribute to cancer progression by acting as “drivers” (Greenman et 

al., 2007; Haber and Settleman, 2007; Carter et al., 2009). Because cancers are complex diseases 

and attributed to multiple genes and/or somatic mutations, recent analyses have been focused on 

identifying “mutated driver pathways” rather than single genes or mutations (Wood et al., 2007; 

Vandin et al., 2012), e.g. functional mutations in phosphorylation signaling pathways (Reimand and 

Bader, 2013). In these studies, all of the known SNPs were removed and the remaining data were 

regarded as somatic mutations for the further detection of drivers. A hidden assumption underlying 
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these studies is that most SNPs are non-functional and do not contribute to cancer development. 

Indeed, only a small proportion of nsSNPs (0.91%) were predicted as phosSNPs in this study. 

However, the result is still a comparatively large number versus somatic mutations, because it was 

estimated that there are <15 driver mutations in an individual tumor (Wood et al., 2007). In particular, 

our results demonstrated that both phosSNPs and phosCMs preferentially occur in cancer genes, 

whereas known cancer genes were more significantly enriched in phosSNP-containing proteins than 

phosCM-associated proteins in most types of cancer (Figure 5). In addition, a considerable number 

of substrates, especially cancer genes, contain both phosSNPs and phosCMs (Supplementary 

Figure S3) and cannot be distinguished from the kinase－substrate networks (Figure 6). In this 

regard, it is possible that phosSNPs may influence cancer susceptibility by driving tumor progression 

together with somatic mutations. Further analyses showed that phosSNPs were significantly 

enriched in amplified genes of breast cancers, while the phosSNPs in tyrosine signaling of lung 

cancer were found to be significantly associated with TK circuits that linked to HFC pTyr sites and 

DRS-containing TK circuits. 

Taken together, the results presented provide a systematic analysis of nsSNPs that influence 

protein phosphorylation and show that phosSNPs are significantly implicated in inherited diseases 

and cancers by dramatically reconfiguring the kinase－substrate phosphorylation network. These 

results not only highlight the potential roles of phosSNPs in driving cancer progression, but also 

provide a useful resource for further experimental consideration. 
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Experimental procedures 

The SNP data sets 

The human SNPs with map summaries were downloaded from the NCBI ftp server (dbSNP 

Build 141, RefSNP docsums in ASN.1 flat format) on September 17, 2014 (Sherry et al., 2001). In 

total there were 62386627 SNPs, including 1705956 cSNPs with 1060070 missense nsSNPs. In this 

work, we only considered nsSNPs that induce changes in amino acid residues. The nsSNPs in other 

forms of mutation, such as frameshift and stop-gained variations, were discarded.  

To search for phosSNP－disease relations, we first downloaded 153839 disease-associated 

SNPs from the GWASdb (Li et al., 2012b). Also, the SNPs with annotated disease information were 

obtained from the ClinVar dataset (November 14, 2014) (Landrumet al., 2014) in the NCBI ftp server, 

including 260112 entries with 36371 unique missense nsSNPs. 

For the population analysis, the cSNPs in the 1000 Genomes Project were downloaded on 

June 1, 2013 (Phase I Release v3) (1000 Genomes Project Consortium, 2010). In total, we obtained 

325159 cSNPs along with reference allele frequencies from four ancestry-based super population 

groups (AMR, Ad Mixed American; ASN, East Asian; AFR, African; EUR, European).  

 

The sequence data sets 

We downloaded 72813 human protein sequences from the RefSeq database (NCBI Homo 

sapiens Annotation Release 66) on September 25, 2014 (Pruitt et al., 2007). These sequences were 

regarded as the benchmark sequence data set for identifying phosSNPs. Also, we obtained 101075 

human protein sequences from the Ensembl database (Version 69, November 26, 2013) (Flicek et 

al., 2013) for the purpose of identifying phosCMs. As previously described (Ren et al., 2010), the 

redundancy in the RefSeq and Ensembl proteins was not cleared.  

In a previous study (Song et al., 2012), we prepared a non-redundant sequence data set from 

the UniProt database (on April 6, 2010) (UniProt Consortium, 2013) with 81733 unique proteins in 

Homo sapiens. For the network analysis, we mapped all of the Refseq proteins to UniProt 

sequences by the BLAST program with a stringent threshold (E-value ≤ 1E-30, Identities ≥ 70%) 

(Johnson et al., 2008). For each RefSeq protein, the best hit was preserved when it met the 

threshold. In total, these RefSeq proteins were mapped to 28315 UniProt sequences. Analogously, 
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the Ensembl proteins were also mapped to UniProt sequences for the network analysis.  

 

The data sets on the phosphorylation sites and PPIs 

Previously, we collected 145646 experimentally identified phosphorylation sites in 28457 

substrates for five eukaryotic species, whereas in this work, 60816 phosphorylation sites of 10253 

human proteins were collected (Song et al., 2012). Moreover, we integrated 59481 experimentally 

identified PPIs (Exp. PPIs) among 12221 human proteins, and obtained 1212607 pre-calculated 

PPIs (STRING PPIs) for 16523 human proteins from the STRING database (Jensen et al., 2009; 

Song et al., 2012). The sequences of phosphorylated and interacting proteins were prepared in the 

UniProt FASTA format (Jensen et al., 2009; UniProt Consortium, 2013). 

 

The data sets on somatic cancer mutations 

The somatic CMs were downloaded from the data repository of the International Cancer 

Genome Consortium (ICGC) (http://dcc.icgc.org, Data Release 14, September 26, 2013) (Hudson et 

al., 2010). Somatic CMs of 26 types of cancers sequenced from the different populations were 

obtained. First, the missense CMs were extracted out and directly mapped to their corresponding 

protein sequences from Ensembl (Flicek et al., 2013). Because the cancer genome sequencing was 

still not completed, several types of cancers only contained very limited number of sequenced 

somatic CMs. Thus, ultimately, only 12 types of cancers with more than 10000 missense CMs were 

selected for further analyses. Because the corresponding SNPs were not available for these cancer 

samples, we selected population-specific SNPs for each cancer to compare phosSNPs and 

phosCMs in the different populations. We chose the AMR for UCEC-US, COAD-US, LUSC-US, 

BRCA-US, READ-US, KIRC-US, GBM-US, OV-US, and PACA-CA, the ASN for LAML-KR and 

LINC-JP, and the EUR for BRCA-UK.  

 

Computational identification of phosSNPs and phosCMs 

Based on the map summaries of human SNPs, we first picked out all RefSeq proteins with at 

least one nsSNP. Then we generated nsSNP-containing proteins (mutated proteins) from the 

benchmark sequences. As previously described (Ren et al., 2010), each of the mutated sequences 

contains only one nsSNP, whereas the combined effects of multiple nsSNPs were not analyzed in 

 at H
uazhong U

niversity of Science and T
echnology on February 27, 2015

http://jm
cb.oxfordjournals.org/

D
ow

nloaded from
 

http://jmcb.oxfordjournals.org/


21 

this study. 

GPS 2.1 (Xue et al., 2011) was chosen to predict ssKSRs for the original and mutated 

proteins, respectively. Because GPS only predicts kinase-specific sites at the PK cluster level, we 

manually formed links of 407 human kinases with their corresponding predictors in GPS 2.1 (Song et 

al., 2012). Then the exact kinases of the predicted phosphorylation sites were characterized. 

Furthermore, the known phosphorylation sites and PPIs were adopted as two filters to remove 

potentially false positive hits for the prediction of ssKSRs. By comparison of the prediction results for 

the original and mutated human proteins, the phosSNPs were identified. 

Previously, we classified all of the predicted phosSNPs into five categories (Ren et al., 2010) 

as follows. (i) Type I: create (+) or remove (-) a phosphorylation site at a phosphorylatable position; 

(ii) Type II: create (+) or disrupt (-) one or multiple adjacent phosphorylation sites; (iii) Type III: 

change the kinase type for one or multiple adjacent phosphorylation sites; (iv) Type IV: induce a 

change in kinase type at a phosphorylatable position; (v) Type V: generate a stop codon to disrupt 

following phosphorylation sites. Because Type V phosSNPs occupied only ~0.7% of the total results 

(Ren et al., 2010) and truncated transcripts heavily influence protein function beyond 

phosphorylation, this type was not calculated or included thereafter. Using the same procedure, we 

also identified and classified potential phosCMs for each cancer type. The predicted datasets for 

phosSNPs and phosCMs were available at http://phossnp.biocuckoo.org/dataset.php. 

 

Network construction and analysis 

To avoid redundancy, all phosSNP- or phosCM-containing proteins were mapped to UniProt 

sequences. Because a kinase is able to phosphorylate a substrate at multiple sites, there can be 

multiple ssKSRs between the kinase and substrate. For the network construction, we only 

considered the KSR, and multiple ssKSRs between a kinase and a substrate were counted as a 

single KSR. Based on the predicted ssKSRs for the original and mutated proteins, a human 

phosSNP- or phosCM-associated kinase－substrate phosphorylation network was re-constructed 

and visualized by Cytoscape 2.8.3 (Shannon et al., 2003). In the network, the nodes are kinases or 

substrates, whereas the edges are KSRs. As previously described (Song et al., 2012), the network is 

directional and the three types of orientations were defined as Kinase -> Substrate (a kinase 

phosphorylates a substrate), Kinase A -> Kinase B (kinase A phosphorylates kinase B), and Kinase 
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A <-> Kinase B (kinase A phosphorylates kinase B and vice versa). Also, we used MCODE v1.32 

(Bader and Hogue, 2003), a plugin of Cytoscape, to detect molecular complexes in the 

phosSNP-associated network. To analyze the impact of phosSNPs on the network topology, 

Cytoscape plugin cytoHubba v1.6 (Lin et al., 2008) was employed to separately calculate the 

topological features in original and mutated networks, including degree, maximal clique centrality 

(MCC), maximum neighborhood component (MNC), bottleneck (BN), and betweenness. As 

previously described (Jin et al., 2007; Wang et al., 2007; Zaman et al., 2013), we picked out top 200 

genes (~10%) with most degrees as hub genes in original and mutated networks, respectively. Then 

the above five topological features for hub genes were also calculated, while non-parametric 

Wilcoxon signed-rank test was performed to statistically compare the topological changes of degree, 

MCC, MNC, BN, and betweenness (p-value < 0.01). Based on the annotation information of the 

1000 Genomes Project, we also constructed and analyzed population-specific phosSNP-associated 

networks.  

 

Identification of gene amplifications in breast cancer cell lines 

Previously, the procedure for identifying gene amplification was described (Zaman et al., 

2013). Following this method, the pre-segmented CNV dataset identified by Affymetrix SNP6.0 

arrays and gene expression information for 59 breast cancer cell lines were downloaded from CCLE 

(http://www.broadinstitute.org/ccle/home, published on September 29, 2012). The corresponding 

marker file for Affymetrix SNP6.0 data, which was annotated with human reference genome 31, was 

downloaded from National Cancer Institute (NCI, https://wiki.nci.nih.gov). The gene amplification 

data processing software GISTIC 2.0 was downloaded from Cancer Cell Line Encyclopedia (Mermel 

et al., 2011). 

The copy number variation dataset and the marker file were imported into GISTIC 2.0 to 

calculate the G-scores with the default parameters (Mermel et al., 2011). As previously described 

(Zaman et al., 2013), we identified amplified genes with the threshold of a G-score > 0.3 and 

expression level among top 50% in each cell line. The GISTIC results were further mapped to USCS 

human genome to obtain the gene names and UniProt accession numbers. Finally, we totally 

identified 3409 amplification genes in 59 breast cancer cell lines. 
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The statistical analysis of enrichment 

From the Cancer Gene Census (Futreal et al., 2004), in total we obtained 474 well 

documented cancer genes. We also obtained 555 cancer genes as a secondary data set (Reimand’s 

data) from a recently published analysis (Reimand and Bader, 2013). Only 442 and 467 cancer 

genes in the two data sets were successfully mapped to UniProt proteins, respectively. Furthermore, 

we downloaded the protein sequences of 4906 drug targets from the DrugBank database (Wishart et 

al., 2008), and 1919 of them were mapped to UniProt sequences. The proteins in the 

phosSNP-associated network (network proteins) were mapped to the three data sets for the purpose 

of statistical enrichment analyses, with a hypergeometric distribution (Liu et al., 2013). 

Moreover, we retrieved the GO annotations of 28315 UniProt proteins (UniProt, 2013). A total 

of 18911 UniProt sequences, including 2375 network proteins, were annotated with at least one GO 

term. The KEGG was used to map UniProt proteins to the biological pathways (Kanehisa et al., 

2004). There were 6824 UniProt proteins, including 1355 network proteins annotated with at least 

one KEGG pathway entry. In addition, because the FunDO (Functional Disease Ontology), an online 

service for exploring gene－disease relations, only adopts a Gene ID as the input (Schriml et al., 

2012), we used the ID Mapping tool in UniProt database (UniProt, 2013) and obtained Gene IDs for 

2544 network proteins. We directly submitted the Gene IDs to FunDO for the statistical enrichment 

analysis of the DO items (p-value < 1E-10) (Schriml et al., 2012). 
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Figure legends 

Figure 1 The procedure for the computational characterization of phosSNPs. With GPS 2.1 (Xue et 

al., 2011), we first predicted the ssKSRs for the original and nsSNP-containing proteins, respectively. 

The known phosphorylation sites and PPIs between kinases and substrates were adopted as two 

filters to reduce false positive predictions. By comparison of the results for the original and mutated 

human proteins, in total we identified 9606 phosSNPs in 7046 proteins with a high degree of 

confidence. 

 

Figure 2 The human phosSNP-associated kinase－substrate phosphorylation network. Multiple 

ssKSRs between a kinase and a substrate were only counted as a single KSR, which was then 

classified into one of four types: added (+), removed (-), changed (C), and unchanged (N). In total, 

the network contains 18056 KSRs among 374 kinases and 2270 substrates, including 154 kinases 

(~41.2%) without any phosSNPs. 

 

Figure 3 Cancer genes and drug targets are highly enriched in the human phosSNP-associated 

kinase－substrate network. (A) Top 10 substrates with the most KSRs. (B) Top 10 kinases with the 

most KSRs. (C) Statistical results suggested that 7.5%－8.3% and ~20% of genes in the network are 

cancer genes and drug targets, respectively. (D) Enrichment analysis of cancer genes and drug 

targets in the phosSNP-associated kinase－substrate network compared with the human PPN. 

 

Figure 4 Examples of four types of phosSNPs. (A) Type I (+): the G691S (rs1799939) of RET 

generates a new phosphorylation site for PKCA. (B) Type I (-): the S32I (rs28933100) of NFKBIA 

removes a IKBKB phosphorylation site. (C) Type II (+): the L172P (rs113133553) of BCL10 creates a 

MAPK12 site at S171. (D) Type II (-): the A358V (rs35332062) of MLXIPL disrupts a PKACA site at 

S361. (E) Type III: the K2162R (rs142711774) of SPTBN1 induces a change in kinase type from 

CK2A1 to PRKCI at S2160. (F) Type IV: the S752Y of EGFR induces a change in kinase type from 

MOK to FAK2 at the same site. The phosSNPs in RET and NFKBIA were validated in previous 

experiments (Supplementary Table S9). 
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Figure 5 A histogram of the statistical results for cancer genes in somatic mutations, phosCMs, and 

phosSNPs from 12 types of cancers. The background is the human proteome, which contains 24080 

proteins. The Cancer Gene Census was used to perform the mapping. The hypergeometric 

distribution was performed to calculate the significance of the cancer genes. For each cancer type, 

the left bar represents the somatic mutation, the middle bar represents the phosCMs, and the right 

bar represents the phosSNP. The Y axis of the histogram indicates the number of cancer genes in 

three variations. The colors of the bar represent the E-ratio. The star (*) number represents the 

degree of the p-value. 

 

Figure 6 The phosSNP- and phosCM-associated kinase－substrate networks in different cancer 

types. Each network contains regulatory kinases (green), phosSNP- (yellow) or phosCM-containing 

(pink) proteins, and proteins with both phosSNPs and phosCMs (cyan). 

 

Figure 7 An example of the crosstalk of the phosSNP-associated kinase－substrate network and 

cancer pathways. The cancer pathway for chronic myeloid leukemia (KEGG ID: hsa05220) contains 

79 genes, and 56 of them are also included in the phosSNP-associated kinase－substrate network. 
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Tables 

Table 1 The statistical analysis of the potential phosSNPs detected by different approaches.  

  

PhosSNP 
GPS 2.1 only

a
 Known Phos

b
 Exp. & STRING PPI

c
 Exp. PPI

d
 

Pro.
e
 SNP

f
 Pro. SNP Pro. SNP Pro. SNP Pro. SNP Pro. SNP 

Type I (+) 61,609 93,076 15.35% 207 58 0.14% 91 27 0.28% 73 16 0.64% 

Type I (-) 59,158 79,450 13.10% 9,321 3,262 8.09% 2,380 1,102 11.47% 898 388 15.54% 

Type II (+) 62,133 122,682 20.23% 7,317 2,793 6.92% 2,913 1,497 15.58% 982 425 17.03% 

Type II (-) 63,457 155,981 25.73% 11,388 5,022 12.45% 4,858 3,149 32.78% 1,766 1,169 46.83% 

Type III 67,012 389,888 64.30% 26,257 33,344 82.65% 4,426 4,759 49.54% 793 650 26.04% 

Type IV 17,489 6,293 1.04% 1,734 337 0.84% 198 58 0.60% 13 6 0.24% 

Total 67,789 606,321  29,032 40,344  7,946 9,606  2,628 2,496  

a Only GPS 2.1 was used for the prediction;  

b The known phosphorylation information was added as a filter to remove false positive hits;  

c Both experimental and STRING PPIs were used;  

d Only experimentally identified PPIs were used;  

e Pro., the number of protein sequences;  

f SNP, the number of phosSNPs.  

To balance the false positive predictions and total predicted hits, the filter of known phosphorylation 

plus Exp. & STRING PPI information was adopted. 

 

 at H
uazhong U

niversity of Science and T
echnology on February 27, 2015

http://jm
cb.oxfordjournals.org/

D
ow

nloaded from
 

http://jmcb.oxfordjournals.org/


31 

Table 2 The statistical analysis of topological features of original and mutated proteins in 

each network. 

 

Topological features Network
a
 Hub

b
 

Degree 3.12E-102 1.90E-15 

MCC 3.70E-22 4.29E-04 

MNC 7.39E-49 2.42E-09 

BottleNeck 1.97E-90 2.56E-08 

Betweenness 2.03E-156 4.93E-40 

The features, including degree, maximal clique centrality (MCC), maximum neighborhood component 

(MNC), bottleneck (BN), and betweenness, were calculated with CytoHubb v1.6 plugin in Cytoscape. 

Wilcoxon signed-rank test was used to calculate the significance.  

a The statistical analysis for all proteins in original and mutated networks;  

b The statistical analysis for hub proteins in original and mutated networks. The top 200 proteins with 

most KSRs were considered as hubs.
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Table 3 The enrichment analysis of KEGG pathways for proteins in the phosSNP-associated 

kinase－substrate network.  

 

KEGG ID Description 
Network

a
 Proteome 

E-ratio
d
 p-value 

Num.
b
 Per.

c
 Num. Per. 

The most over-represent pathway       

hsa04722 Neurotrophin signaling pathway 90 6.64% 136 1.99% 3.33  1.94E-32 

hsa04660 T cell receptor signaling pathway 78 5.76% 124 1.82% 3.17  4.85E-26 

hsa04012 ErbB signaling pathway 70 5.17% 105 1.54% 3.36  9.94E-26 

hsa04910 Insulin signaling pathway 85 6.27% 148 2.17% 2.89  2.40E-24 

hsa05200 Pathways in cancer 159 11.73% 388 5.69% 2.06  5.69E-23 

hsa05220 Chronic myeloid leukemia 56 4.13% 79 1.16% 3.57  7.56E-23 

hsa04010 MAPK signaling pathway 145 10.70% 342 5.01% 2.14  1.09E-22 

hsa04510 Focal adhesion 104 7.68% 224 3.28% 2.34  5.80E-20 

hsa04380 Osteoclast differentiation 79 5.83% 155 2.27% 2.57  2.10E-18 

hsa05166 HTLV-I infection 121 8.93% 290 4.25% 2.10  2.38E-18 

hsa05214 Glioma 47 3.47% 69 1.01% 3.43  3.07E-18 

hsa04666 Fc gamma R-mediated phagocytosis 60 4.43% 104 1.52% 2.91  1.22E-17 

hsa05162 Measles 72 5.31% 139 2.04% 2.61  2.25E-17 

hsa05215 Prostate cancer 60 4.43% 105 1.54% 2.88  2.30E-17 

hsa04914 Progesterone-mediated oocyte maturation 55 4.06% 92 1.35% 3.01  3.06E-17 

hsa04520 Adherens junction 56 4.13% 96 1.41% 2.94  7.55E-17 

hsa04110 Cell cycle 71 5.24% 139 2.04% 2.57  1.01E-16 

hsa04664 Fc epsilon RI signaling pathway 51 3.76% 85 1.25% 3.02  3.60E-16 

hsa05169 Epstein-Barr virus infection 94 6.94% 215 3.15% 2.20  5.14E-16 

hsa04662 B cell receptor signaling pathway 51 3.76% 89 1.30% 2.89  5.15E-15 

hsa04912 GnRH signaling pathway 58 4.28% 109 1.60% 2.68  6.46E-15 

The most under-represent KEGG Pathway       

hsa01100 Metabolic pathways 113 8.34% 1265 18.54% 0.45  3.34E-31 

hsa04740 Olfactory transduction 14 1.03% 393 5.76% 0.18  1.68E-22 

The hypergeometric distribution was performed. p-value < 1E-14.  

a Proteins in the network;  

b The number of proteins annotated with the KEGG ID;  

c The proportion of proteins annotated with the KEGG ID;  

d E-ratio, the enrichment ratio as the proportion of proteins in the network divided by that in the 

proteome. 

 at H
uazhong U

niversity of Science and T
echnology on February 27, 2015

http://jm
cb.oxfordjournals.org/

D
ow

nloaded from
 

http://jmcb.oxfordjournals.org/


33 

Table 4 Ten predicted phosSNPs in 10 genes are significantly associated with human 

diseases.  

 

Gene SNP Disease p-value 

PPP1R12B rs3881953 Amyotrophic Lateral Sclerosis (ALS) 0.000553 

ERBB2 rs1058808 Asthma 8.33E-07 

ERBB2 rs1058808 Breast Neoplasms 0 

HNF4A rs1800961 Coronary heart disease 8.00E-10 

HNF4A rs1800961 plasma HDL cholesterol (HDL-C) levels 0 

HNF4A rs1800961 HDL cholesterol 0 

HNF4A rs1800961 HDL cholesterol 8.00E-10 

CFTR rs74571530 Congenital Bilateral Absence of the Vas Deferens 0 

ERG1 rs1805123 Acquired Long QT Syndrome (aLQTS); Long QT Syndrome 0 

HNF4A rs1800961 Triglycerides 1.99E-08 

HNF4A rs1800961 Triglycerides 4.19E-05 

HNF4A rs1800961 Triglycerides 6.65E-05 

ICAM3 rs2230399 Soluble ICAM-1 4.40E-08 

MLXIPL rs35332062 Metabolite levels 1.18E-12 

MLXIPL rs35332062 Metabolite levels 5.92E-11 

DDX20 rs197414 Obesity (extreme) 0.0009447 

IL4R rs1801275 IgE levels  1.00E-07 

IL4R rs1801275 IgE levels  1.54E-06 

CCND3 rs1051130 Other erythrocyte phenotypes 1.70E-09 

CCND3 rs1051130 Other erythrocyte phenotypes 2.55E-09 

HNF4A rs1800961 C-reactive protein 2.00E-09 

Prediction results were mapped to different GWA studies (p-value < 0.001). The gene names along 

with the corresponding SNPs, diseases, and p-values were directly taken from the GWASdb (Li et al., 

2012b). 
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Table 5 The statistical data of four population-specific phosSNP-associated kinase－

substrate networks.  

 

Population network AMR ASN AFR EUR 

Kinase 193 193 202 198 

Substrates 344 265 392 350 

Kinase without phosSNP
a
 95 93 100 105 

Added 291 (15%) 203 (13.3%) 417 (17.6%) 299 (14.7%) 

Removed 717 (36.9%) 611 (40.1%) 790 (33.4%) 765 (37.6%) 

Changed 209 (10.8%) 138 (9%) 335 (14.1%) 196 (9.6%) 

Unchanged 725 (37.3%) 573 (37.6%) 826 (34.9%) 772 (38%) 

Total KSRs 1942 1525 2368 2032 

MCC 3.30E-48 1.29E-64 1.10E-35 1.13E-53 

Degree 5.44E-64 1.68E-68 2.38E-46 4.69E-72 

Four population-specific phosSNP-associated kinase－substrate networks were constructed for 

AMR, ASN, AFR, and EUR, respectively. The distributions of MCC and degree for the original and 

mutated proteins in each network were statistically analyzed by the Wilcoxon signed-rank test.  

a Kinases without any predicted phosSNPs in the network. 
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Table 6 The genes in the population-specific phosSNP-associated kinase－ substrate 

networks with significantly different KSRs between two given populations.  

 

Gene UniProt A-B
a 

A population B population 
E-ratio χ

2b p-value 
Num. Per. Num. Per. 

IRS1 P35568 AFR-EUR 77 3.25% 3 0.15% 22.02 57.30 3.74E-14 

PXN Q59GS5 AMR-AFR 39 2.01% 2 0.08% 23.78 39.89 2.68E-10 

IRS1 P35568 AMR-EUR 40 2.06% 3 0.15% 13.95 32.16 1.42E-08 

RAF1 P04049 AMR-EUR 36 1.85% 2 0.10% 18.83 30.48 3.37E-08 

IRS1 P35568 AFR-ASN 77 3.25% 9 0.59% 5.51 29.20 6.54E-08 

RAF1 P04049 AMR-AFR 36 1.85% 5 0.21% 8.78 28.84 7.88E-08 

CDK14 O94921 AMR-EUR 38 1.96% 5 0.25% 7.95 25.58 4.25E-07 

PXN Q59GS5 AMR-ASN 39 2.01% 2 0.13% 15.31 24.17 8.80E-07 

PXN Q59GS5 AMR-EUR 39 2.01% 8 0.39% 5.10 20.79 5.13E-06 

EGFR P00533 AMR-EUR 20 1.03% 64 3.15% 0.33 20.55 5.80E-06 

RAF1 P04049 AMR-ASN 36 1.85% 3 0.20% 9.42 19.62 9.43E-06 

MBP P02686 AFR-ASN 16 0.68% 36 2.36% 0.29 18.73 1.51E-05 

GFAP P14136 AFR-EUR 1 0.04% 19 0.94% 0.05 17.34 3.12E-05 

CTTN Q8N707 ASN-EUR 22 1.44% 4 0.20% 7.33 16.96 3.83E-05 

CDK16 Q00536 AFR-EUR 30 1.27% 3 0.15% 8.58 16.93 3.88E-05 

CDK14 O94921 AMR-AFR 38 1.96% 13 0.55% 3.56 16.90 3.94E-05 

ERBB3 P21860 AFR-EUR 20 0.84% 48 2.36% 0.36 15.57 7.95E-05 

CDK14 O94921 AMR-ASN 38 1.96% 6 0.39% 4.97 15.44 8.53E-05 

The Yates' chi-squared (χ2) test was used (p-value < 1E-4). The full results (p-value < 0.01) were 

shown in Supplementary Table S8.  

a A-B, a population pair;  

b χ2, the chi-squared test result. 
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