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One of the major tasks of phosphoproteomics is providing potential bio-

markers for either diagnosis or drug targets in medical applications.

Because most complex diseases are due to the actions of multiple genes/

proteins, the identification of complex phospho-signatures containing mul-

tiple phosphorylation events within phosphoproteomics-based networks

generates more efficient and robust biomarkers than a single, differentially

phosphorylated substrate or site. Here, we briefly summarize the current

efforts and progress in this newly emerging field of phosphoproteomics-

based network medicine by reviewing the computational (re)construction

of phosphorylation-mediated signaling networks from unannotated phos-

phoproteomic data, the discovery of robust network phospho-signatures

and the application of these signatures for classifying cancers and predict-

ing drug responses. The challenges as well as the potential advantages are

evaluated and discussed. Although the current techniques are at present far

from mature, we believe that such a systematic approach as we describe

can generate more useful and robust biomarkers for biomedical usage, even

at the current stage of development.

Introduction

The past decade has witnessed rapid progress in phos-

phoproteomics, which employs state-of-the-art high-

throughput mass spectrometry for the purpose of

large-scale profiling of phosphopeptides in vivo [1–7].
The simultaneous identification and quantification of

thousands of phosphopeptides from one sample has

thus become something of a ‘routine’ assay [2,4,7]. It

is widely believed that phosphoproteomics can serve as

a powerful approach to clinical trials in personalized

medicine by providing highly specific biomarkers and

drug targets [1,5,8–10]. However, phosphoproteomic

identification of single biomarkers is like searching for

a ‘needle in a haystack’ for two major reasons. First,

the coverage of phosphoproteomics is quite low, and

any single phosphoproteomic assay can only monitor

a small proportion of bona fide phosphorylation events

in vivo [11–14]. Even for the same sample, the overlap-

ping rate of two workflows with different processing

requirements is usually lower than 50% [12–14]. Thus,
even if one disease can actually be attributed to a sin-

gle phosphorylation event, such a biomarker is difficult

to reproduce technically and thus makes little practical

sense for clinical trials. Second, although there are sin-

gle-gene diseases, most diseases are quite complicated

and multiple genes are implicated [15–17]. Thus,

sophisticated approaches are needed to identify

dependable and efficient biomarkers from the phos-

phoproteomic data.

Recently, ‘network medicine’ has emerged as a

promising strategy that takes into consideration both
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key genes/proteins and their relationships in specific

modules, pathways and processes [15–17]. Accumulat-

ing evidence suggests that the phosphorylation-medi-

ated signaling network is not static but can be

dynamically rewired in different samples and diseases

or upon undergoing different treatments [9,18–22].
Thus, elucidating the key features of such a network

would be expected to provide phospho-signatures that

would be highly useful in further biomedical applica-

tions. Here, we summarize the cutting-edge advances

in phosphoproteomics-based network medicine by

reviewing the computational methodologies for (re)

constructing phosphorylation-mediated signaling net-

works from phosphopeptides, discovering efficient

phospho-signatures from the networks and using the

signatures as potential biomarkers and/or drug targets.

Although this newly emerging field is still in its

infancy, we anticipate that such a systematic method

will prove to be an indispensable approach for person-

alized medicine.

(Re)construction of phosphorylation-
mediated signaling networks from
phosphoproteomic data

In general there are two types of computational

methodologies for phosphorylation-mediated signaling

networks. The initial step for both is the mapping of

all the identified phosphopeptides in order to obtain

the benchmark sequence data and to designate the

integrated phosphoproteins together with their exact

phosphorylation sites (Fig. 1A,B).

The first approach involves directly mapping phos-

phoproteins to pathways or protein–protein interac-

tion (PPI) networks (Fig. 1A). For example,

Matsuoka et al. identified over 900 DNA damage

response (DDR) related phosphorylation sites from

> 700 proteins using an S/T-Q motif, which is the

consensus sequence recognized by ATM/ATR (Ataxia

telangiectasia mutated/Ataxia telangiectasia and Rad3-

related) [23]. Using the two pathway analysis tools

Ingenuity Pathway Analysis [24] and PANTHER [25],

they obtained a number of network modules that

potentially participate in DDR [23]. In 2010, Huttlin

et al. systematically identified nearly 36 000 phosphor-

ylation sites in 6296 proteins from nine different mur-

ine tissues [18] and mapped them to the STRING

database, which is the most comprehensive resource

of both the known and predicted PPIs [26]. To model

a more integrative signaling pathway, they incorpo-

rated the phosphoproteomic data together with the

known mitogen-activated protein kinase (MAPK)

pathway, which was obtained from the KEGG PATHWAY

database [27]. Recently, Weigand et al. quantitatively

Fig. 1. (Re)construction of phosphorylation-mediated signaling networks from phosphoproteomic data by first mapping the phosphopeptides

to protein sequences and then (A) directly mapping phosphoproteins to PPI networks or pathways or (B) constructing kinase–substrate

phosphorylation networks with predicted ssKSRs. Due to limitations of the computational technique, not all phosphorylation sites can be

predicted with regulatory kinases (kinases X and Y with their substrates and sites are indicated in blue and orange, respectively).
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detected 12 669 phosphorylation sites from human

MDA-MB-231 tumor xenografts treated with a

humanized antibody (RG7356) for the CD44 receptor

[28]. The SUBEXTRACTOR algorithm was used to inte-

grate the phosphorylation sites with PPI information

through a Bayesian probabilistic model [29], while fur-

ther analysis predicted and confirmed that CD44-

expressing tumors respond to RG7356 therapy, mainly

by exerting an effect on the MAPK pathway [28].

The phosphorylation of modifiable sites is the result

of the actions of upstream regulatory kinases [2]. A

kinase having either a high level of activity or low rec-

ognition specificity may modify a greater number of

phosphorylation sites. Thus, the kinase activity and

kinase–substrate relations should also be included for

a more precise integrative analysis. Recently, attention

has been focused on the construction of kinase–sub-
strate networks inferred from the phosphoproteomic

data [3,30,31] (Fig. 1B). First, potential regulatory kin-

ases of phosphoproteins are predicted with a sequence-

based kinase-specific predictor [3], such as SCANSITE

[32], NETPHOSK [33] or GROUP-BASED PREDICTION SYSTEM

(GPS) [34], by directly inputting protein sequences.

From the result, potential site-specific kinase–substrate
relations (ssKSRs) are determined and further filtered

using the identified phosphorylation sites as a refer-

ence. Then, a number of contextual factors such as

PPI and co-localization information on the kinase and

substrate can be used to greatly reduce the false posi-

tive hits [35–38]. Because a given kinase can also be

phosphorylated by another kinase, all of the predicted

ssKSRs are potentially involved in the kinase–sub-
strate networks that can be visualized using CYTOSCAPE

[39] or similar tools. Linding et al. in 2007 developed a

seminal algorithm, termed NETWORKIN, by integrating

both motif-based predictions and direct or indirect

PPIs, thus constructing a high confidence human phos-

phorylation network containing 7143 ssKSRs among

1759 substrates and 68 kinases for 4488 phosphoryla-

tion sites [35,36,40]. Using this powerful tool, they

painstakingly modeled the phosphorylation-mediated

DDR network by linking together several different

biological processes involved in the response to DNA

double-stranded breaks, cell cycle checkpoints and

apoptosis. This method was rapidly adopted by main-

stream researchers for constructing a variety of net-

works, including the JNK phosphorylation network

[41], autophagy-associated phosphorylation networks

[42], and the dynamic phosphorylation networks dur-

ing human embryonic stem cell (ESC) differentiation

[43] and mouse skin carcinogenesis [44].

In 2008 we developed a sequence-based tool, termed

GPS, which has the capacity to hierarchically predict

kinase-specific phosphorylation sites for 408 human

kinases [34]. Other tools, such as SCANSITE [32] and

NETPHOSK [33], only predict ~ 30 kinases. Thus, by

comparison, the performance of GPS 2.0 is better than

analogous predictors [34,45]. Combining GPS predic-

tions, PPIs and protein complexes, Bensimon et al.

constructed an alternative DDR phosphorylation net-

work and observed that ~ 40% of the associated phos-

phorylation events were ATM-independent [46].

Recently, we integrated the GPS algorithm together

with the PPI information to develop a software pack-

age called IGPS (in vivo GPS) for the prediction of

in vivo ssKSRs [38]. We constructed eukaryotic phos-

phorylation networks and predicted a total of 186 922

ssKSRs among 1079 protein kinases and 9247 sub-

strates for 44 290 phosphorylation sites in five differ-

ent species (Saccharomyces cerevisiae, Caenorhabditi

s elegans, Drosophila melanogaster, Mus musculus and

Homo sapiens). The results suggest that the PPI filter

removes up to 95% of any false positive hits predicted

by the GPS sequence-based algorithm [38]. In addition,

by analyzing Polo-like kinase (Plk) mediated phos-

phoregulation, it was demonstrated that the subcellular

co-localization information is also an efficient contex-

tual filter [37].

Network-based discovery of
phospho-signatures

Because only a small proportion of phosphorylation

sites can be identified in any single phosphoproteomic

profiling, statistical approaches have been widely

adopted to test whether phosphoproteins are over-rep-

resented or under-represented in distinct pathways or

significantly modified by specific kinases. Thus, phos-

phoproteomic profiling can be described as a ‘near

random sampling’. Using this approach, one pathway

with more actual phosphorylation sites will be charac-

terized by more phosphopeptides than another path-

way containing fewer phosphorylation sites (Fig. 2A).

Also, one kinase with a greater number of modified

sites will be more frequently identified, i.e. with more

hits, than another kinase having fewer modified sites

(Fig. 2A). Although there are a number of intrinsic

biases in the currently available techniques, this frame-

work is nevertheless fundamental for the performance

of statistical analysis.

Enrichment analysis of phosphorylation-associated

pathways provides efficient and robust network phos-

pho-signatures. For example, by comparing the phos-

phoproteomic data sets of ESCs and induced

pluripotent stem cells (iPSCs), Phanstiel et al. observed

that a number of somatic-cell-related processes are
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significantly over-represented in iPSCs, and these

results were shown to be consistent with additional

analyses at both the transcript and protein levels [47].

Thus, it was discovered that somatic cell programs are

incompletely silenced in iPSCs [47]. Also, it is possible

to predict individual molecular biomarkers from the

pathways or sub-networks if some of their neighbors

are known disease genes [15] (Fig. 2B). For example,

Matsuoka et al. determined that DDR-associated

phosphorylated proteins are significantly enriched in

the AKT-insulin pathway. Based on the results, they

confirmed that an insulin responsive site in 4E-BP1,

Ser111, was phosphorylated by ATM [23].

The available evidence suggests that the phospho-

proteomic data faithfully reflect the dynamics of kinase

activity in vivo. For example, by a comparison of the

phosphoproteome in the presence or absence of Plk1

activity, three independent studies respectively identi-

fied 390 [19], 1071 [48] and 752 [20] differentially regu-

lated phosphorylation sites. In total, 1979 non-

redundant sites were identified, while only 26 (~ 1.3%)

phosphorylation sites were identified in all three exper-

iments [37]. However, the Plk1 consensus sequence

N/D/E-pS was significantly over-represented in all

three studies [19,20,48]. In this regard, although the

overlap rate in phosphoproteomic studies is low,

kinase activity analysis can be used to generate con-

sistent results which can serve as a robust phospho-

signature (Fig. 2C). Based on the hypothesis that there

is higher kinase activity when there is a greater num-

ber of modified sites, we systematically analyzed the

human liver phosphoproteome and demonstrated that

the activities of 60 and 67 kinases were significantly

upregulated (i.e. more sites modified) and downregu-

lated (fewer sites modified), respectively [38]. At least

for the upregulated kinases, these results are highly

consistent with the known data [38]. Also, Bennetzen

et al. used two autophagy inducers, resveratrol and

spermidine, to quantitatively identify the phosphopro-

teome regulated in the autophagic response [42]. Using

NETWORKIN [35,36] and MOTIF-X [49], a highly effective

tool for phosphorylation motif discovery, they detected

the two enriched motifs S/T-P and RXXS that are rec-

ognized by CDK2 and PAK4/PAK7/DMPK/CLK1,

respectively [42]. More recently, Casado et al. formally

described a kinase–substrate enrichment analysis

approach for predicting activated kinases in acute

myeloid leukemia (AML) cells by comparing the

phosphoproteome-based kinase–substrate networks

obtained from control and test samples [50]. The pre-

dictions were successfully validated in cell lines by

western blotting analysis of the activity-correlated

autophosphorylation sites in the predicted kinases.

With this method, they also determined that certain

kinases, such as CDC7, PDK1 and ERK, are more

active in drug-resistant primary AML cells, while Abl,

Lck, Src and CDK1 are more active in drug-sensitive

cells [50]. In addition, this strategy was used for

A

B C

Fig. 2. Phosphoproteomic profiling and network-based discovery of phospho-signatures. (A) The ‘near random sampling’ hypothesis that the

pathway or kinase with a greater number of phosphorylation sites will be sampled with more phosphopeptides. (B) Potentially novel

molecular biomarkers can be selected in the event that their neighbors are known disease genes in the same sub-networks or pathways

[15]. (C) Based on the hypothesis of higher kinase activity with a greater number of modified sites, differentially activated kinases can be

statistically calculated by comparing the phosphoproteome-based kinase–substrate networks under different conditions.
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analyzing the phosphoproteomic dynamics during

mouse skin carcinogenesis, and the deregulated activi-

ties of PAK4, PKC and SRC were determined to be

major drivers of malignancy [44].

Biomedical usage of network
phospho-signatures

It is believed that phosphorylation-mediated signaling

networks are rewired in a variety of diseases, and that

phosphoproteomic assays have the capacity to detect

at least a considerable proportion of aberrant phos-

phorylation events [1,10,51,52]. Thus, the identification

of stable phospho-signatures is important for both

early diagnosis and effective treatment. Conventional

studies have mainly focused on identifying single phos-

phorylation events as potential biomarkers. For exam-

ple, by analyzing the mTOR (the mammalian target of

rapamycin) regulated phosphoproteome, Grb10 was

validated as a key substrate of mTORC1, which inhib-

its tumor growth by phosphorylating Grb10 [53,54].

However, we speculated that a single substrate might

not be sufficient as an efficient biomarker, because one

kinase usually modifies multiple substrates and may

therefore synergistically participate in diseases or the

response to drugs. Thus, the dynamics of only one

gene/protein may not be adequate for accurately classi-

fying a given disease or predicting a drug response

[9,55].

Recently, the identification of network phospho-sig-

natures with multiple targets has emerged as an impor-

tant endeavor. Drug-related genome analyses have

suggested that kinases represent nearly 20% of all

potential drug targets [56,57]. Indeed, a number of

both serine/threonine kinases and tyrosine kinases

(TKs) have been shown to be potent targets

[6,10,51,54,55], whereas kinase inhibitors have come to

be regarded as some of the most potentially useful

drugs for cancer treatment [52,58]. Thus, the first

approach is to monitor the dynamics of kinase activity

in diseases or upon drug administration (Fig. 3A).

Because the autophosphorylation of TKs is related to

their activity, Rikova et al. performed tyrosine phos-

phoproteomic analyses on 41 non-small-cell lung can-

cer (NSCLC) cell lines and 150 NSCLC tumor

samples [9]. The TK activity was estimated from the

number of observed spectra and then used for the clas-

sification of tumors. One of the major findings in the

study was that different combinations of activated

TKs usually exist in different NSCLCs, so individual-

ized treatments must be considered for any effective

therapy [9]. However, because of the low reproducibil-

ity of the phosphoproteomic technique, the phospho-

peptides of most TKs can only be detected in a small

number of samples [9]. Thus, as described above, the

kinase activity may be accurately estimated from the

phosphorylated substrates.

The second method for obtaining network phospho-

signatures is monitoring the limited substrates in spe-

cific pathways (Fig. 3B). For example, dasatinib, a

multiple kinase inhibitor, has been approved as a

potent drug for two types of leukemia tumors and is

still undergoing evaluation for use in other cancers [55].

With a phosphoproteomic approach, Klammer et al.

identified 12 phosphorylation sites in non-kinase pro-

teins as a network phospho-signature which accurately

A

B

Fig. 3. Biomedical use of two types of network phospho-signatures. (A) By western blotting analysis of activity-correlated

autophosphorylation sites, the kinase activities can be measured and correlated with the phenotypic data. (B) The expression or

phosphorylation levels of a subset of key proteins can be monitored and correlated with the phenotype data.
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predicts the dasatinib response in NSCLCs [55]. Also,

Lee et al. developed a novel strategy of order- and

time-dependent drug combinations for more efficiently

killing triple-negative breast cancer cells [59]. The

expression or phosphorylation levels of 35 proteins in

related signaling pathways were quantitatively moni-

tored and correlated with phenotype data by means of

a mathematical model which accurately predicted

drug-induced apoptosis in breast cancer cells [59]. In

addition, this method was further refined and used

for modeling of the genotoxic-stress-induced DDR net-

work [60].

Future perspectives

Currently, the major bottleneck of phosphoproteomics

is its low level of coverage. A single phosphorylation

event that is identified in the course of one phospho-

proteomic profiling may be technically difficult to

repeat in another assay [11–14]. Also, multiple genes/

proteins may participate in complex diseases or the

response to drug treatment [15–17]. Thus, the identifi-

cation of single biomarkers for accurately classifying

diseases or predicting drug responses is an impractical

task, at least at the present time. Since we are

undoubtedly entering into an era in which network

medicine will play an important role, robust network

phospho-signatures are obviously needed.

For biomedical applications, recent analyses sug-

gested that the expression or phosphorylation levels of

a subset of key proteins in specific pathways or pro-

cesses can be monitored through low-throughput

assays [55,59,60]. Then mathematical models can be

constructed to correlate the genotypes with pheno-

types. These network signatures were proved to be

more efficient and robust than single biomarkers

[55,59,60]. However, ‘low-throughput’ usually means

labor-intensive and time-consuming processes, even if

they are indeed more accurate. Also, to construct such

models, at least a certain number of genes/proteins

should have been identified as being involved in the

targeted pathways or processes. These candidates are

usually selected based on already existing knowledge

or high-throughput profiling results. Thus, for a less

well studied sample, at least a two-step procedure

should be performed, starting with a large-scale detec-

tion of potentially regulated substrates followed by

small-scale quantification of their expression patterns

and/or phosphorylation dynamics. If robust network

phospho-signatures turn out to be retrievable from less

reproducible high-throughput profiling, the procedure

would be greatly simplified. Indeed, although directly

monitoring kinase activity from its phosphopeptides is

less dependable [9], the results of the kinase activity

analysis can indeed be robustly estimated from phos-

phoproteome-based kinase–substrate networks, at least

for Plk1 [19,20,48].

(Re)construction of kinase–substrate phosphoryla-

tion networks from the phosphoproteomic data is

heavily dependent on the accurate characterization or

prediction of ssKSRs [3,45]. Because proteins can

physically interact with kinases and yet not become

phosphorylated, direct or indirect PPI information is

not an optimal filter for narrowing down candidates

for kinase–substrate relations. Recently, Newman

et al. incubated 289 human kinases with protein chips

and identified 3656 kinase–substrate relations in vitro

[61]. Whether these kinase–substrate phosphorylation

events really occur in vivo still remains to be deter-

mined. An accurate determination of kinase–substrate
relations is still a great challenge. Also, it is estimated

that there are up to 518 kinase genes encoded in the

human genome, and the exact recognition motifs/pat-

terns for a considerable number of these kinases have

yet to be determined. Even our improved GPS algo-

rithm can still only predict kinase-specific phosphory-

lation sites for 408 (~ 79%) human kinases [34]. Thus,

the prediction performance obviously needs to be

improved. However, although the current approaches

for the analysis of kinase activity are quite immature,

they are still highly useful for elucidating phosphoryla-

tion at a system-wide level and can provide robust

phospho-signatures [19,20,38,42,48].

Taken together, we anticipate that network phos-

pho-signatures, and not single phosphorylation events,

will come to be accepted as the most appropriate bio-

markers and/or drug targets for biomedical usage.

Kinase activity is not the only important feature that

can be derived from the less reproducible phosphopro-

teomic data, and it is anticipated that more efficient

and robust network indicators will be discovered in

the near future. In addition, while the current analysis

of kinase activity only processes qualitative phospho-

peptide data, incorporating quantitative information

will further improve the accuracy of biomarker identi-

fication.
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