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False positive rate
s one of the most essential post-translational modifications (PTMs), and
orchestrates a variety of cellular functions and processes. Besides experimental studies, numerous
computational predictors implemented in various algorithms have been developed for phosphorylation
sites prediction. However, large-scale predictions of kinase-specific phosphorylation sites have not been
successfully pursued and remained to be a great challenge. In this work, we raised a “kiss farewell” model
and conducted a high-throughput prediction of cAMP-dependent kinase (PKA) phosphorylation sites. Since a
protein kinase (PK) should at least “kiss” its substrates and then run away, we proposed a PKA-binding
protein to be a potential PKA substrate if at least one PKA site was predicted. To improve the prediction
specificity, we reduced false positive rate (FPR) less than 1% when the cut-off value was set as 4. Successfully,
we predicted 1387, 630, 568 and 912 potential PKA sites from 410, 217, 173 and 260 PKA-interacting proteins
in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens, respectively.
Most of these potential phosphorylation sites remained to be experimentally verified. In addition, we
detected two sites in one of PKA regulatory subunits to be conserved in eukaryotes as potentially ancient
regulatory signals. Our prediction results provide an excellent resource for delineating PKA-mediated
signaling pathways and their system integration underlying cellular dynamics and plasticity.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Phosphorylation is one of themost ubiquitous and important post-
translational modifications (PTMs) of proteins, and implicated in
almost all kinds of cellular processes and pathways [1,2]. In
eukaryotes, phosphorylation is carried out by numerous protein
kinases (PKs), which are members of kinome or kinase superfamily
[3,4]. Each PK recognizes distinct S/T or Y residues in protein
sequences and only modifies a defined subset of substrates specifi-
cally, to ensure signaling fidelity. Thus, identification of phosphory-
lated substrates with their kinase-specific phosphorylation sites is the
foundation for understanding the molecular mechanism of phosphor-
ylation dynamics.

Besides experimental studies, various computational approaches
have been extensively employed and achieved great successes for
phosphorylation sites prediction. Numerous predictors have been
developed mainly for two purposes: prediction of general or kinase-
specific phosphorylation sites. For the former question, NetPhos [5]
and DisPhos [6] were constructed. And for the latter, we and other
researchers have contributed great efforts and developed several
online tools, e.g., GPS [7,8], PPSP [9], ScanSite [10], KinasePhos [11],
PredPhospho [12], NetPhosK [13], Predikin [14] and pkaPS [15], etc.
Recently, NetPhosYeast was constructed to predict phosphorylation
sites in yeast specifically, as the first organism-specific predictor [16].
l rights reserved.
Given ~10 phosphorylation predictors in hand, a great challenge is
emerging that how we can make sense for large-scale predictions of
phosphorylation sites in proteome-wide level. To our knowledge,
only a few articles have addressed the problem [15,17,18]. With
Predikin, Brinkworth et al. predicted cognate PKs for 383 un-
annotated phosphorylation sites of 216 peptide sequences in yeast
[17]. Combined with a motif-based strategy and protein association
information, Linding et al. developed NetworKIN to predict associated
PKs for 7143 un-annotated phosphorylation sites in Phospho.ELM
database, and constructed in vivo phosphorylation networks [18]. In
addition, Neuberger et al. used pkaPS directly to predict PKA (cAMP-
dependent kinase) sites in human proteome [15]. But there were only
4860 of 40,887 (11.9%) human proteins predicted not to contain a
single potential PKA site [15]. Thus, large-scale predictions of kinase-
specific phosphorylation sites are still very difficult and need more
elaboration. For such analyses, two essential points should be
addressed. The first one is control of false positive rate (FPR). It's
expected that bona fide phosphorylation sites are only a small
proportion of total S/T or Y residues, usually b1:10. Thus, even a small
FPR of 10% will generate more than 50% false positive hits in total
prediction results. The second one is recognition specificity between
a protein kinase with its substrates. As described previously, only a
short peptide flanking of a site is not sufficient for providing full
specificity for a PK modification in vivo [19,20]. Numerous mechan-
isms have also been suggested to contribute additional specificities
for PKs recognition, such as subcellular co-localization of PKs with
their substrates, co-complex or interacting directly [19–21]. Thus, in
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Table 1
Different PKA (protein kinase A) genes in four eukaryotic organisms

Kinase.coma UniProtb Exp.
PPIc

String
PPId

Known
sub.e

S. cerevisiae TPK1 KAPA_YEAST 35 148 256
TPK2 KAPB_YEAST 31 200 29
TPK3 KAPC_YEAST 21 76 79

C. elegans kin-1 KAPC_CAEEL 2 418
D. melanogaster Pka-C1 KAPC_DROME 12 72

Pka-C2 KDC1_DROME 0 57
PKA-C3 KDC2_DROME 4 144
CG12069 Q9VA47_DROME 0 20

H. sapiens PRKACA Q32P54_HUMAN 154 193 1
PRKACB KAPCB_HUMAN 1 102
PRKACG Q5VZ02_HUMAN 0 109
PRKX PRKX_HUMAN 5 55
PRKY PRKY_HUMAN 0 64

a PKA names in kinase.com database.
b Accession numbers of PKA proteins in Swiss-Prot and TrEMBL (UniProt) database.
c The number of experimentally verified PKA-binding proteins.
d The number of predicted PKA-interacting proteins.
e The experimentally verified substrates for PKA proteins.
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vivo a PK should at least “kiss” its substrates then say farewell by
direct or indirect interactions. Furthermore, it was proposed that the
accurate specificity of PKA substrates phosphorylation in higher
eukaryotes could be achieved by compartmentalization of PKA, in
great measure mediated by A-kinase anchoring proteins (AKAPs)
[22–24]. However, the AKAPs are not existed in yeast [24]. In this
regard, some other mechanisms of providing specificities still remain
to be elucidated.

In this article, we performed a large-scale prediction of cAMP-
dependent kinase (PKA) phosphorylation sites from its binding
proteins in four eukaryotic proteomes. Two hypotheses were
established. First, we supposed that different PKA isoforms in
eukaryotes recognize similar peptidemotifs/profiles formodifications.
Secondly, we proposed a “kiss farewell”model that PKA should at least
kiss its substrates by directly physical interaction or forming a co-
complex. Although the kisses might be transient with different
degrees of affinity, there are still a large proportion of the interactions
between PKAwith its substrates, which could be detected in standard
protein–protein interaction screenings. The PKA-interacting proteins
were retrieved from both of experimental verified and predicted
protein–protein interaction (PPI) databases. Then the GPS software
[7,8] was employed to predict PKA-specific sites in these proteins. As
lack of a “gold standard” negative data set to precisely evaluate the
false positive rate (FPR), we developed a simple method to estimate
the theoretical maximum of FPR. And the FPR was reduced lower than
1% in this work. Successfully, we predicted 410, 217, 173 and 260
potential PKA substrates with 1387, 630, 568 and 912 potential PKA
sites in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila
melanogaster and Homo sapiens, respectively. These data sets serve as
a good start point for further experimentation.

Results

Analysis of PKA proteins/isoforms in four eukaryotic organisms

PKA was firstly identified in rabbit skeletal muscle [25], conserved
in eukaryotes as a serine/threonine kinase sub-family, activated by
cAMP and plays important roles in a large number of cellular
processes [26]. Currently, there were 337 PKA-specific phosphoryla-
tion sites from 210 substrates experimentally identified in vivo or in
vitro (Phospho.ELM, ver 6.0) [27]. Despite four decades efforts on
identifying PKA targets with their sites, most of the studies were
focused on mammalians. For example, there were only one and three
PKA substrates with sites experimentally identified in S. cerevisiae and
D. melanogaster, respectively. Especially, although a PKA gene of kin-1
in C. elegans was discovered [28], there were no substrates of kin-1
reported. Recently, Ptacek et al. used the proteome chip technology to
carry out a large-scale survey to identify in vitro PK-specific substrates
in S. cerevisiae [29]. Totally, they identified 256, 29 and 79 in vitro
substrates for TPK1, TPK2 and TPK3. Although the results still
remained to be experimentally verified in vivo, and the exact PK-
specific phosphorylation sites were not mapped, this work provided
useful information for further experimental consideration. Taken
together, identification of PKA substrates with their sites in eukaryotes
still remain to be a great challenge.

From the annotation and classification of the kinase.com database,
we obtained 3, 1, 4, 5 distinct components of PKA sub-family in S.
cerevisiae, C. elegans, D. melanogaster and H. sapiens, respectively
(Table 1). Then these protein sequences were multi-aligned by
MUSCLE 3.6 with default parameters [30]. The phylogenetic tree for
PKA sub-family was constructed by MEGA 3.1 [31], with Neighbor-
Joining method with bootstrap test (Fig. 1). By BLAST searching, the
best hit of ScTPK1 in E. Coli, ORF708 (Q47592) was chosen as the
outgroup. Interestingly, ScTPK1, ScTPK2 and ScTPK3 of S. cerevisiae
and HsPRKACA, HsPRKACB and HsPRKACG of H. sapiens are separated
after speciation, respectively. Also, HsPRKX was reported to play
important roles in morphogenesis and the functions are not shared
with other PKA components [32]. In our analysis, HsPRKX, HsPRKYand
DmPKA-C3were clustered into a distinct branch. Thus, proteins of PKA
sub-family might have similar but distinctive functions. Despite the
functional similarity and diversity of PKA sub-family, we hypothesized
that all PKA proteins recognize similar peptide motifs/profiles for
modification. Thus, computational predictor constructed for PKA-
specific phosphorylation sites could be generally applied for
eukaryotes.

PKA-interacting proteins: experimental verified vs. predicted

Frankly, prediction of the exhaustive set of PKA substrates in a
proteome will not make much sense, because the PKA recognition
sequences may appear too frequently in proteins. For example,
Neuberger et al. used pkaPS directly to predict PKA substrates in
human proteome [15]. But there were 36,027 of 40,887 (88.1%) human
proteins predicted as potential substrates with at least one PKA site
[15]. Here, we adopted sufficient conditions for predicting a reliable
data set. We proposed a simple “kiss farewell” model that the PKA
should at least kiss its targets and then say farewell for modification.
And the PKA must physically bind with its substrates or form a co-
complex by direct or indirect interaction. Although such an interaction
might be transient, and the binding affinity might also be weak, we
believed that there were still a significant proportion of the
interactions between PKAwith its substrates, which could be detected
in standard protein–protein interaction screenings. Thus, a PKA-
interacting protein is highly probable to be a real substrate of PKA, if at
least one PKA site is predicted with high confidence.

To obtain a comprehensive protein–protein interaction (PPI) map
for each organism, several public PPI databases were employed,
including DIP [33], BioGrid [34], Grid [35], MINT [36], BIND [37],
Wormbase [38] and HPRD [39]. Since most of entries in BIND for S.
cerevisiaewere covered in other databases, we only used DIP, BioGrid,
Grid and MINT to retrieve yeast PPI data. Also, Wormbase and HPRD
only contained PPI data for C. elegans and H. sapiens, respectively.
Since the protein names in the databases are different, we mapped all
these proteins into Swiss-Prot and TrEMBL (UniProt) database. Then
all PPI data were integrated into a non-redundant data set for each
species, with the number of 52,987, 5,959, 30,558 and 51,529 pairs in
S. cerevisiae, C. elegans, D. melanogaster and H. sapiens, respectively
(Table 2). Furthermore, a pre-calculated PPI database, STRING, was
also downloaded directly [40]. Finally, the sequences of both of
experimentally verified and predicted PKA-binding proteins were
retrieved (Table 1).



Fig. 2. The distributions of GPS scores of PKA on randomly generated heptapeptides
(XXX-S/T-XXX, X is a random residue). Totally 10,000 random heptapeptides were
generated and the calculation was repeated for twenty times. Then the average
numbers were computed and diagramed below.Fig. 1. Phylogenetic analysis of PKA sub-family. By BLAST searching, the best hit of

ScTPK1 in E. Coli, ORF708 (Q47592) was chosen as the outgroup.
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Clearly, most of PKA-binding proteins were experimentally identi-
fied in H. sapiens. Especially, the alpha-catalytic subunit of PKA in
human, PRKACA, attracted the most studies. Totally, there were 154
PRKACA-binding proteins identified, while only one PRKACB-interact-
ing protein was discovered (Table 1). And PRKACG-binding proteins
still remain to be reported.Most of PKA-binding proteins in S. cerevisiae
(TPK1, 2, 3) were identified from large-scale experiments. And only
three substrates of PKAwere identified in S. cerevisiae. Thus, these yeast
PKA-binding proteinswould be an excellent data set for PKA substrates
identification. Again, since PRKACA was proved to interact with more
than 150 proteins, it could be estimated that PRKACB and PRKACG also
have numerous binding proteins. In this regard, even predicted PPIs
will be also important for large-scale prediction of PKA substrates.

Control and reduction of false positive rate (FPR)

Control of false positive prediction is the key point in large-scale
predictions of kinase-specific phosphorylation sites. The false positive
rate (FPR) is the proportion of negative sites that are erroneously
predicted as positive hits. Actually, the real PKA phosphorylation sites
are only a very small part of all S/T residues in proteins. For PKA, the
positive sites vs. the negative sites in current data set is b1:56 (337 vs.
18,964). Thus, even a predictor with sensitivity (Sn) of 100%with a FPR
of 10% will generate ~85% of false positive hits in final predictions. In
this regard, the FPR should be controlled and reduced greatly.

Given a data set containing all non-phosphorylation sites, the FPR
could be easily computed. However, precise calculation of FPR is
unavailable due to lack of a “gold standard” negative data set.
Table 2
Experimentally verified vs. predicted PPI (protein–protein interaction) data sets in four
species

S. cerevisiae C. elegans D. melanogaster H. sapiens

DIP 44,156 4028 22,819 1397
BioGrid 81,775 4433 32,817 38,217
Grid 23,952 4453 28,406
MINT 14,408 4710 20,780 8127
BINDa 4919 22,462 10,756
Wormbase 4090
HPRD 33,412
Non-redundantb 52,987 5959 30,558 51,529
STRING 200,974 230,509 132,923 690,143

a PPI data of S. cerevisiae in BIND database were not used.
b Non-redundant data for experimentally verified PPIs.
Previously, we and other researchers simply took all verified sites as
positive data and regarded all un-identified sites as negative sites [7–
9,11,12]. However, this procedure is too stringent since many real sites
are not discovered rather than negative hits. Thus, the prediction
performances of most of predictors were under-estimated.

In this article, we developed an alternatively method to estimate
the FPR theoretically. We randomly generated 10,000 heptapeptides
as XXX-S/T-XXX, which X is a random amino acid and the centered
residue is S or T. Then we used GPS to score these peptides. The
distribution of GPS score of PKA on these peptides were shown in
Fig. 2. Although there were a few sites to be real hits, its proportion
would be very small. With this approach, we estimated the theoretical
maximum of FPR for PKA. The procedure was repeated twenty times
and the average FPR value was calculated. The theoretical FPRs with
cut-off values of 4, 2.4 and 1 were estimated as 0.94%, 5.18% and
26.09%, respectively. Thus, we selected the cut-off value of 4 for large-
scale predictions.

Large-scale prediction of PKA phosphorylation sites for its binding
proteins

In this work, we directly employed GPS 1.10 with the cut-off value
of 4 (high threshold) to predict PKA sites in its interacting proteins. For
S. cerevisiae, we also included a data set from a high-throughput
experiment [29], to make the prediction more integrated.

Then the theoretically maximal false positive hits for each data set
was calculated (Table 3). Firstly, all serine (S) and threonine (T)
residues in PKA-binding proteins were accounted. If all of these
residues are real negative sites, the false positive hits could be
Table 3
Theoretically minimal precisions (Pr) of GPS (Group-based Phosphorylation Scoring) on
PKA-binding proteins in four organisms

Totala Predictedb Est. falsec Prd

S. cerevisiae 47,755 1387 449 67.63%
C. elegans 28,467 630 268 57.46%
D. melanogaster 24,179 568 227 60.04%
H. sapiens 31,093 912 292 67.98%

The false positive rate (FPR) of GPS 1.10 is 0.94% under the high threshold (cut-off value
of 4). Then given total S and T residues, the theoretically maximal false positive hit and
minimal precision (Pr) for each organism was calculated, respectively.

a Total S and T residues.
b S/T residues predicted as positive hits.
c Estimated false positive hits.
d Theoretically minimal precisions.



Table 4
There were 410, 217, 173 and 260 potential PKA substrates predicted in S. cerevisiae, C. elegans, D. melanogaster and H. sapiens, respectively

Proteome-widea Exp. PPI STRING PPI Total p-valueb

Totalc Pre.d Total Pre. Total Pre. Total Pre.

S. cerevisiae 7565 4104 58 48 267 182 569 410 2.9E−17
C. elegans 23,283 12,854 2 2 418 217 418 217 0.9
D. melanogaster 27,867 16,325 16 12 241 172 242 173 2.3E−05
H. sapiens 70,646 34,819 157 130 299 223 348 260 3.8E−22

a Proteome-wide, we carried out genome-wide predictions of PKA sites for the four proteomes directly.
b p-value, we used the Fisher's Exact Test to evaluate that the predicted PKA targets were significantly enriched in S. cerevisiae, D. melanogaster and H. sapiens (p-value≪0.05) but

not in C. elegans (p-valueN0.05).
c Total, Total proteins in a data set.
d Pre., the number of predicted substrates.
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calculated (0.94%⁎Number of all S/T residues). Since not all of S/T
residues in PKA-interacting are negative sites, the false positive hits
will be over-estimated. However, although the false positive rate was
over-estimated, our analysis still generated satisfying results. For
example, there were 31,093 S/T residues contained in human PKA-
binding proteins. And GPS predicted out 912 sites as positive hits.
With themaximal FPR of 0.94% at cut-off value of 4, therewere atmost
292 (31,093×0.94%) sites to be false positive hits. Then we could
calculate the minimal precision in this instance as 67.98% (620/912).
Also, we defined theoretically minimal precision (Pr) as below:

Pr ¼ M−N�FPR
M

Here, N is the total number of S/T sites for prediction; M is the
number of predicted sites by GPS.When the cut-off value was taken as
4, the precision (Pr) values were 67.63%, 57.46%, 60.04% and 67.98% for
S. cerevisiae, C. elegans, D. melanogaster and H. sapiens, respectively
(Table 3).

Successfully, we predicted 410, 217, 173 and 260 potential PKA
substrates with 1387, 630, 568 and 912 potential PKA sites in S.
cerevisiae, C. elegans, D. melanogaster and H. sapiens, respectively
(Table 4). And the detailed results of the large-scale predictions were
shown in Supplementary Table1–4. In this analysis, two questions
should be addressed. The first problem was whether our approach
could significantly enrich the prediction set of proteins with PKA sites.
Table 5
Several predicted PKA substrates with their sites are shown

UniProt (SRS) String PKAa Exp. PKAb

Experimentally verified PKA substratese

GMFB_HUMAN PRKACA PRKACA
S4A4_HUMAN PRKACA PRKACA
HDAC8_HUMAN PRKACA PRKACA
NEB2_HUMAN PRKACA PRKACA
KAPR_YEAST TPK1;TPK2;TPK3 TPK1;TPK2;TPK3

Experimentally verified PKA-interacting proteinsf

GFAP_HUMAN PRKACA PRKACA
BCA3_HUMAN PRKACA PRKACA
PHX2A_HUMAN PRKACA PRKACA
KAPR_CAEEL Kin-1 Kin-1
CHK1_YEAST TPK1;TPK2 TPK2

Predicted PKA-binding proteinsg

RASK_HUMAN PRKACG
CNR1_HUMAN PRKACA
KAPR2_DROME Pka-C1;PKA-C3
GPA16_CAEEL Kin-1
BUB2_YEAST TPK2

a The PKA isoform interacts the protein in STRING database.
b The PKA isoform experimentally interacts the protein.
c Predicted PKA sites.
d Experimentally verified PKA sites.
e The five predicted PKA substrates were verified as real substrates previously, and these
f The five proteins were both of experimentally verified and predicted as PKA-binding pr
g The five proteins were only predicted as PKA-binding proteins.
Firstly, we carried out proteome-wide predictions of PKA sites in the
four proteomes directly (Table 4). Thenwe used the Fisher's Exact Test
(http://www.langsrud.com/fisher.htm) to evaluate whether the pre-
dicted PKA substrates would be statistically present in PKA-binding
proteins. In the results, we found that the predicted PKA targets were
significantly enriched in S. cerevisiae, D. melanogaster and H. sapiens
(p-value≪0.05) but not in C. elegans (p-valueN0.05). The results could
be attributed to the different qualities of PPI data sets. Obviously, the
quality of experimental PPI data was much better than predicted data.
In H. sapiens, there were 157 of 348 potential PKA-binding proteins to
be experimentally verified (p-value=3.8E−22). But in C. elegans, there
were only 2 proteins experimentally identified (p-value=0.9) (Table
4). In this regard, further experimental progresses on PKA-interacting
proteins verification will be a great help for PKA substrates
identification. The second question was how many known PKA
substrates had been determined as PKA-interacting proteins by
experiments and predictions. Since most of PKA substrates were
identified in mammalians, especially in human, we carried out a
simple analysis to address the problem. In Phospho.ELM (ver 6.0) [27],
there were 140 PKA substrates identified in H. sapiens, while 88
(62.86%) of them were PKA-binding proteins. And GPS could predict
80 (57.14%) of 140 human PKA targets as positive hits with at least one
PKA site. Taken together, although several real PKA substrates were
missed, our method could still generate satisfying results for further
experimental verifications.
GPS (PKA)c Exp. sited PMID

T26 T26;S82 9030586
S177;T254;S1026 S1026 11744745
S39;S83 S39 14701748
S100;S754 S94;S100 12417592
S73;T143;S144;T379 S144 92065884

T7;S38;S68;S393
T143;S144
S153
S122
T271;S286

S172
S185
S51;S84;S323
S15
S98

proteins also were experimentally verified and predicted as PKA-binding proteins.
oteins, but not verified as PKA substrates.

http://www.langsrud.com/fisher.htm


Fig. 3. Two potentially conserved phosphorylation signals are shown. The first one is
S145 of S. cerevisiae, S84 of D. melanogaster and S99 of H. sapien, but not conserved in C.
elegans. The second one is T380, T323, S323 and S350 in S. cerevisiae, C. elegans, D.
melanogaster and H. sapien, respectively. The yeast S145 and human S98 were
experimentally verified to be phosphorylated by ScBCY1 and HsPRKAR2A, respectively.
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Also, we randomly selected several predicted PKA substrates to
depict our analysis (Table 5). Five experimentally verified PKA sub-
strates were picked out, including GMFB (GMFB_HUMAN), SLC4A4
(S4A4_HUMAN), HDAC8 (HDAC8_HUMAN), PPP1R9B (NEB2_HUMAN)
and BCY1 (KAPR_YEAST). These PKA substrates were both of expe-
rimentally verified and predicted as PKA-interacting proteins, with
diverse functions. For example, HDAC8 is a member of human class I
Histone deacetylases, and its enzymatic activity is negatively regu-
lated by PKA phosphorylation [41]. Also, we listed five predicted PKA
substrates for experimentally verified or predicted PKA-binding
proteins, separately. The GFAP (GFAP_HUMAN), C11orf17 (BCA3_HU-
MAN), PHOX2A (PHX2A_HUMAN), kin-2 (KAPR_CAEEL) and CHK1
(CHK1_YEAST) were experimentally verified and also predicted as
PKA-interacting proteins (Table 5). Mutations of GFAP, a class-III
intermediate filament, are involved in Alexander disease [42]. And
CHK1, as a protein kinase, plays an important role as a checkpoint of
DNA damage to arrest cell cycle progression [43]. These proteins
physically interact with PKA and were predicted as potential PKA
substrates. And experimentally verification of PKA sites in these
proteins will be important to elucidate their biological dynamics and
functions under phosphorylation regulation. Again, five predicted
PKA-binding proteins were also shown, including KRAS (RASK_HU-
MAN), CNR1 (CNR1_HUMAN), Pka-R2 (KAPR2_DROME), gpa-16
(GPA16_CAEEL) and Bub2 (BUB2_YEAST) (Table 5). These proteins
are also important in various cellular processes. For example, Bub2 is a
TBC (Tre-2/Bub2/Cdc16) domain-containing protein, as a GTPase acti-
vator and spindle checkpoint during mitosis [44]. And our predictions
might be useful for further experimental design.

Two conserved PKA phosphorylation signals across eukaryotes

An interesting question is emerging: Are there any potential
phosphorylation signals conserved across eukaryotes? From con-
served PKA-binding proteins, the conserved and predicted PKA
substrates were retrieved and shown in Supplementary Table 5.
Only one of PKA regulatory subunits is conserved in four organisms,
with the name of ScBCY1 (KAPR_YEAST), Cekin-2 (KAPR_CAEEL),
DmPka-R2 (KAPR2_DROME), and HsPRKAR2A (KAP2_HUMAN) in S.
cerevisiae, C. elegans, D. melanogaster and H. sapiens, respectively.

In S. cerevisiae, ScBCY1 was proved to be a PKA substrate with the
verified site of S145. Also, ScBCY1 was experimentally verified and
predicted as an interacting protein of TPK1, TPK2 and TPK3. And in C.
elegans, Cekin-2 was also proved to interact with PKA/kin-1. Again, in
H. sapiens, HsPRKAR2A was also verified as a PKA target with the site
of S98. It was experimentally verified to interact with PRKX, but
prediction PPI data proposed it could interact with all members of PKA
sub-family. Finally, in D. melanogaster, only prediction PPI data suggest
it could interact with fly Pka-C1 and PKA-C3.

The protein sequences of four PKA regulatory subunits were
retrieved and predicted by GPS, with the cut-off value of 4.
Successfully, several potential PKA sites were predicted, including
S74, T144, S145 and T380 of ScBCY1, S122 of Cekin-2, S51, S84 and
S323 of DmPka-R2, and S98 and S349 of HsPRKAR2A. Both of two
experimental verified sites were predicted correctly by GPS. And
newly predicted sites are useful for further experimental verifications.

We aligned the four proteins withMUSCLE 3.6 [30]. And conserved
PKA sites were shown in Table 6 and Fig. 3. The first potentially
Table 6
Two potentially conserved phosphorylation sites with their GPS scores

UniProt (SRS) Position 1 GPS score Position 2 GPS score

ScBCY1 KAPR_YEAST S145 8.672 T380 4.706
Cekin-2 KAPR_CAEEL T323 3.111
DmPka-R2 KAPR2_DROME S84 7.150 S323 4.300
HsPRKAR2A KAP2_HUMAN S99 7.372 S350 4.156
conserved phosphorylation signal was S145, S84 and S99 of yeast, fruit
fly and human separately, while it was not conserved in nematode.We
also checked the PKA regulatory subunit in other numerous species,
while the site was conserved and predicted as a PKA site (GPS
scoreN4) (data not shown). Thus the phosphorylation signal is
potentially conserved across eukaryotes expect nematodes. And the
second potential phosphorylation site is T380, T323, S323 and S350 in
S. cerevisiae, C. elegans, D. melanogaster and H. sapiens, respectively.
Although T323 of Cekin-2 was predicted with score of 3.111, which
was lower than the threshold, we proposed it to be a potentially
conserved PKA site (Fig. 3). Again, we also found the site was
conserved in other species with the GPS score greater than 4. Thus, the
PKA regulatory subunit might be co-evolvedwith PKA as its conserved
substrate and interacting protein. Our analysis proposed that PKA sites
on the PKA regulatory subunit were not well conserved in nematodes.
However, there was only one PKA gene (kin-1) in C. elegans, while
other organisms have multi-PKA genes. Thus, the recognition profile
of nematode PKA/kin-1 might be slightly different against other
organisms. Also, several real PKA sites in nematode may diminish
during evolution, and several newly generated sites still retain original
functions. In this regard, experimental identification of PKA/kin-1
sites in nematodes will be a great help for understanding similarity
and specificity of PKA recognition and modification during evolution.

Discussion

For prediction of kinase-specific phosphorylation sites, a widely-
adopted hypothesis is that a kinase could recognize specific sequence
profiles/motifs/patterns around phosphorylation sites for modifica-
tion in a substrate [7,8,13]. If a given protein is really phosphorylated
by a kinase, the current predicters, including GPS [7,8], PPSP [9],
ScanSite [10], KinasePhos [11], PredPhospho [12], NetPhosK [13],
Predikin [14] and pkaPS [15], could predict potential kinase-specific
sites in the protein. However, only the short phospho-peptide could
not provide full specificity for a kinase recognition in vivo. Previously,
researches proposed various mechanisms, such as subcellular co-
localization of kinases with their substrates, co-complex or physical
interaction [19–21]. However, these additional mechanisms were not
included in the current predictors. In those cases where known
interacting partners are not PKA substrates, the current predictors will
still predict potential PKA-specific phosphorylation sites in these
proteins. In this regard, directly prediction of PKA substrates in a
proteome will not make much sense, because the PKA recognition
sequences may appear too frequently in proteins.

In this article, we performed a large-scale prediction of PKA
phosphorylation sites from its interacting proteins in four eukaryotes.
We hypothesized that different PKA genes conserved in eukaryotes
recognize similar consensus motif/profile for modification. Also, we
raised a simple “kiss farewell” model that the PKA should at least kiss
its targets and then say farewell for modification, by direct physical
binding or indirectly forming a co-complex mediated by other linker
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proteins. Although the interactions between PKA and its substrates
might be transient or weak, our approach could still significantly
enrich the prediction set of proteins with PKA sites, at least in S.
cerevisiae, D. melanogaster and H. sapiens. Based on these two
hypotheses, we employed GPS 1.10 directly. The theoretically maximal
false positive rate (FPR) was controlled and reduced as 0.94%, when
the cut-off value is taken as 4. Successfully, we predicted 410, 217, 173
and 260 potential PKA substrates with 1387, 630, 568 and 912
potential PKA sites in S. cerevisiae, C. elegans, D. melanogaster and H.
sapiens, respectively. Most of the potential substrates with their sites
still remain to be experimentally verified. Our prediction results
provide a useful data set for further experimental verification.
Furthermore, our analysis also provides a linkage between current
studies of PPI and PTM to be useful for further PTM researches.

Materials and methods

Preparation of benchmark sequences for four eukaryotic proteomes

There are many public databases of protein sequences, while the
protein names or accession numbers are various without standardiza-
tion. Although other databases could be chosen, in this work, we used
Swiss-Prot and TrEMBL (UniProt) database as the benchmark (May,
2006). From Sequence Retrieval System (SRS5) at ExPASy website
(http://www.expasy.ch/srs5/), we retrieved protein sequences for four
eukaryotic organisms. Totally, there were 7565, 23,283, 27,867 and
70,646 protein sequences obtained from S. cerevisiae, C. elegans, D.
melanogaster and H. sapiens, separately.

Collecting all members of PKA sub-family with their protein sequences

The kinase.com database identified and collected most of the
protein kinases in human, mouse and other eukaryotic organisms
[3,4]. Then these PKs were classified into many sub-families [3,4]. The
PKA sub-family is composed of several PKA paralogs/isoforms to be
conserved and important in various cellular processes. Totally, there
were 3, 1, 4 and 5 PKA members found in S. cerevisiae, C. elegans, D.
melanogaster and H. sapiens, respectively (Table 1).

Retrieving PKA-interacting proteins

Both of experimentally verified and predicted protein–protein
interaction (PPI) databases were employed for retrieving of the PKA-
binding proteins. Currently, large-scale PPI data is only available for S.
cerevisiae, C. elegans, D. melanogaster and H. sapiens. Thus we focused
on the four organisms in the study. For experimentally verified PPI
data, we took out PPI data from several public databases, including DIP
[33], BioGrid [34], Grid [35], MINT [36], BIND [37], Wormbase [38] and
HPRD [39]. All these PPI data were combined into an integrated and
non-redundant data set, with the number of PPI pairs is 52,987, 5959,
30,558 and 51,529 in S. cerevisiae, C. elegans, D. melanogaster and H.
sapiens, respectively (Table 2). For predicted PPI data, we simply used
the STRING database, which is an excellent pre-calculated PPI
database for numerous species [40]. Both of predicted PPI data and
their corresponding sequences were downloaded. The detailed
statistics of PPI data in four species are shown in Table 2. In addition,
Ptacek et al. carried out a large-scale experiment to identify PK-
specific substrates in S. cerevisiae [29]. Totally, there were 256, 29, and
79 targets identified for TPK1, TPK2, and TPK3, respectively (Table 1).
However, these substrates were not experimentally verified in vivo.
And the exact PKA phosphorylation sites in these substrates were not
mapped. Thus for S. cerevisiae, we also adopted this data set to make
the analysis more integrated.

The experimentally verified and predicted PPI data were mapped
to Swiss-Prot and TrEMBL (UniProt) database by BLAST for normal-
ization of protein names (Table 1). Also, the experimentally verified
substrates for eukaryotic PKA proteins were also listed (Table 1).
Although there were 140 human proteins identified as PKA substrates,
however, most of the annotation information in Phospho.ELM was
“PKA Group”. Thus, the information of which human PKA isoformwill
phosphorylate the proteins was not known. There was only one
protein clearly annotated as “PKA alpha” (Table 1).

Prediction of PKA-specific phosphorylation sites with GPS

Previously, the GPS (Group-based Phosphorylation Scoring
method, ver 1.10) software was developed for general purpose to
predict PK-specific phosphorylation sites, including PKA [7–8]. PKA
group is a Serine/Threonine kinase sub-family. And the training data
set was taken from Phospho.ELM (Ver 2.0) with 180 verified PKA sites
[27]. Three cut-off values of 1, 2.4 and 4 were established for low,
medium and high threshold, respectively. And the prediction
performance under high threshold was Sn 67.80% and Sp 97.88%. As
the database updated, now there were 337 PKA sites identified (Ver
6.0). To test whether these new collected data will reduce the
prediction performance of GPS, we re-calculated the sensitivity (Sn)
and specificity (Sp) of GPS with the newly generated data set. In this
study, the threshold was chosen as 4, and the prediction performance
of GPS on current data set was Sn 64.99% and Sp 97.83%. Thus, the
prediction performance of GPS 1.10 is still satisfying and slightly
reduced for the new data. In this regard, we used GPS 1.10 directly for
PKA phosphorylation sites prediction.

Orthologs detection for PKA-interacting proteins

To detect conserved PKA-binding proteins in the four species, we
downloaded stand-alone InParanoid program 1.0 (http://inparanoid.
sbc.su.se/) [45]. With the default parameters, we calculated orthologs
pairwisely from protein sequences of four eukaryotic proteomes
(Supplementary Table 5).
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