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Abstract

Protein acetylation is an important and reversible post-translational modification (PTM), and it governs a variety of cellular dynamics
and plasticity. Experimental identification of acetylation sites is labor-intensive and often limited by the availability of reagents such as
acetyl-specific antibodies and optimization of enzymatic reactions. Computational analyses may facilitate the identification of potential
acetylation sites and provide insights into further experimentation. In this manuscript, we present a novel protein acetylation prediction
program named PAIL, prediction of acetylation on internal lysines, implemented in a BDM (Bayesian Discriminant Method) algorithm.
The accuracies of PAIL are 85.13%, 87.97%, and 89.21% at low, medium, and high thresholds, respectively. Both Jack–Knife validation
and n-fold cross-validation have been performed to show that PAIL is accurate and robust. Taken together, we propose that PAIL is a
novel predictor for identification of protein acetylation sites and may serve as an important tool to study the function of protein acet-
ylation. PAIL has been implemented in PHP and is freely available on a web server at: http://bioinformatics.lcd-ustc.org/pail.
� 2006 Elsevier Inc. All rights reserved.
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Protein acetylation is a widespread covalent modifica-
tion in eukaryotes, transferring acetyl groups from acetyl
coenzyme A (acetyl CoA) to either the a-amino (Na)
group of amino-terminal residues or to the e-amino
group (Ne) of internal lysines at specific sites [1–5]. As
one of the most ubiquitous protein modifications,
approximately 85% of eukaryotic proteins are Na-termi-
nally acetylated in a co-translational manner on several
types of residues such as serine, alainine, and so on
[3,4]. Although Ne-lysine acetylation is less common, its
role is probably more important [1,2,4–12]. Ne-Acetyla-
tion of proteins in internal lysine residues is an essential
and highly reversible type of post-translational modifica-
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tion (PTM), and the Ne-acetylation orchestrates a variety
of cellular processes, including transcription regulation
[7,9], DNA repair [10], apoptosis [8,11], cytokine signal-
ing [12], and nuclear import [6]. As a ‘loss-of-function’
mechanism proposed, Ne-acetylation greatly alters the
electrostatic properties of a protein by neutralizing the
positive charge of the lysine residues. The formation of
hydrogen bonds on lysine side-chains are also disrupted
[5,13]. In addition, lysine acetylation also creates a new
interface for protein binding, as a ‘gain-of-function’
mechanism [5,13]. Thus, Ne-acetylation may modulate
the protein function, such as of protein–protein interac-
tion, DNA binding, enzymatic activity, stability, and
subcellular localization [1,4–7,9,12,13].

Early studies of histone acetylation have proposed
that the modification regulates the gene expression and
stabilizes the chromatin structure. In the past decades,
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numerous non-histone acetylated proteins have been
identified to play diversified regulatory roles among
eukaryotic [1,2,5], archaeal [14], bacterial [15], and viral
[16] proteins. As a highly reversible reaction, the level
of lysine acetylation in vivo is controlled by the antago-
nism of HATs (histone acetyltransferases) and HDACs
(histone deacetylases). About 30 HATs have been discov-
ered and divided into three classes such as Gcn5/PCAF,
p300/CBP, and MYST proteins [5]. In human, there are
18 distinct HDACs grouped into three groups including
class I, IIa/IIb, and III [17]. Aberrant lysine acetylation
has been implicated in the development of cancer and
other diseases, such as prostate cancer [18], myeloid leu-
kemia [5,19], and inflammatory lung diseases [20]. Thus,
both HATs and HDACs are potential molecular targets
for biochemical therapy. Indeed, numerous HDAC inhib-
itors have been developed successfully as anticancer
drugs, selectively inducing the tumor cells into apoptosis
[21–23].

Although intensive research has been performed, the
study of Ne-acetylation is still in its infancy. The full con-
tent of regulatory functions of lysine acetylation remains
to be elucidated. Both HATs and HDACs have their sub-
strate specificities, for example, peptide motif GKXXP as
a potential recognition signal of GCN5 in yeast [2,4,13].
However, the general consensus sequences/motifs/profiles
of substrates for HATs and HDACs targeting are still
unclear. In this regard, dissection of acetylation and
deacetylation on specific lysines of acetylated proteins will
be a foundation of understanding the molecular mecha-
nism and dynamics of Ne-acetylation. Besides the conven-
tional experimental methods, such as mutagenesis of
potential acetylation sites [12], acetylation-specific antibod-
ies [6,7], and mass-spectrometry [8,14,24] have also been
employed. However, these experimental approaches are
laborious and expensive. Therefore, the prediction of acet-
ylation sites in silico is desirable. Previous computational
studies only have focused on Na-terminal acetylation
[25,26].

In this work, we present a novel online computational
program for protein acetylation site prediction named
PAIL, Prediction of Acetylation on Internal Lysines. We
manually mined scientific literature to collect 249 experi-
mentally verified acetylation sites of 92 distinct proteins.
After redundant-clearing, there are 246 sites from 89 sub-
strates reserved. Then the BDM (Bayesian Discriminant
Method) algorithm [27] was employed. The window length
of a potential acetylated peptide has been optimized as 13.
The accuracy of PAIL is highly encouraging with, 85.13%,
87.97%, and 89.21% at low, medium, and high thresholds,
respectively. Both Jack–Knife validation and n-fold (6-, 8-,
and 10-fold) cross-validation have been employed. The
accuracies of two validations fluctuate from 82.17% to
86.11%, and these results confirm that the PAIL is accurate
and robust. In this regard, we propose that PAIL might
be a useful in silico tool for further experimental
consideration.
Materials and methods

Data Preparation. Here, we define the lysine (K) residues that undergo
acetylated modification as positive data (+), while those non-acetylated
lysine residues are regarded as negative data (�). Furthermore, we define a
potential acetylated peptide (PAP) (denoted by~x ¼ ðp1p2 . . . pmKp1 . . . pnÞ

0,
where pi represents a residue, m P 1, n P 1) as a local peptide flanking a
lysine residue. Then the window length of a PAP is m + n + 1. In this
work, m is equal to n and the windows with length of 9, 11, and 13 have
been examined.

First, we searched PubMed with the key word ‘‘acetylation
lysine’’, and collected 249 unambiguously experimental verified acet-
ylation sites of 92 distinct proteins from >1000 scientific articles.
Although the acetylation-related literature is increasing rapidly, we
only adopted the acetylation sites published online before December
10th, 2005. Then we retrieved the primary sequences of these proteins
from Swiss-Prot/TrEMBL database (http://cn.expasy.org). And the
acetylated peptides with length of 9, 11, and 13 were parsed as
positive (+) data, separately.

The positive data (+) set for training might contain several homolo-
gous sites from homologous proteins. If the training data are highly
redundant with too many homologous sites, the prediction accuracy will
be overestimated. To avoid the overestimation, we clustered the protein
sequences from positive (+) data set with a threshold of 30% identity by
BLASTCLUST, one program in the BLAST package [28]. If two proteins
were similar with P30% identity, we re-aligned the proteins with
BL2SEQ, another program in the BLAST package [28], and checked the
results manually. If two acetylation sites from two homologous proteins
were at the same position after sequence alignment, only one item was
reserved while the other was discarded. Thus, we obtained non-redundant
positive data (+) of high quality with 246 acetylation sites from 89 pro-
teins. Only three acetylation sites from three proteins were truly redundant
sites to be removed. As previously described [29,30], the negative (�) sites
were taken from non-annotated lysine sites in the same proteins from
which (+) sites were chosen. The homology reducing process was also
carried out on (�) data. If the identity between a PAP of (�) data and an
acetylated peptide of (+) data was not less than 30%, the PAP of (�) data
was removed as a redundant site. The final curated data set is available
upon request.

Algorithm design. The standard Bayesian Discriminant Method
(BDM) has been employed in PAIL. By this means, acetylated peptides
from (+) data and PAPs from (�) data have been extracted from protein
sequences. Thus, the assignment rule of candidate acetylation local pep-
tides given by BDM can be described as

predict ~x 2
ðþÞ if P ðþj~xÞ � Rð�j~xÞ > b

ð�Þ otherwise

�
: ð1Þ

Here PððþÞj~xÞ and P ðð�Þj~xÞ are the posterior probabilities of ~x for both
(+) and (�) site, respectively. The b is the cut-off value to obtain the pre-
diction performance. At the same time, by the Bayesian Role, the posterior
probability for (+) sites can further be expressed as

Pðþj~xÞ ¼ P ð~xjþÞPðþÞ
P ð~xÞ : ð2Þ

Here P (+) is the prior probability that is assumed to be a constant. And in
this work, although there are more (�) sites than (+) sites in the data set,
we regard the prior probabilities for both kinds of sites as equal, i.e., no
prior information for prediction, which can avoid bias prediction results.
At the same time, there are many ways to estimate the probability Pð~xjþÞ
and one simple way is to assume that all flanking residues are mutually
independent. Thus, given the local peptides of PAPs with length m, it
can be formulated as

Pð~xjþÞ ¼
Ym

i¼1

PðpijþÞ: ð3Þ

Here P (pij+), i = 1, . . . ,m are calculated by the occurrence of each residue
in training data. So equation (2) can be further described as

http://cn.expasy.org
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P ðþj~xÞ ¼

Qm
i¼1

P ðpijþÞPðþÞ

Pð~xÞ : ð4Þ

In the same way, we can describe the posterior probability for (�) sites as

P ð�j~xÞ ¼

Qm
i¼1

P ðpij�ÞPð�Þ

Pð~xÞ : ð5Þ

Thus, the final discriminant function can be stated as

predict ~x 2
ðþÞ if

Qm
i¼1

PðpijþÞ �
Qm
i¼1

P ðpij�Þ > B

ð�Þ otherwise

8<
: : ð6Þ

And B ¼ b Pð~xÞ
PðþÞ is the final threshold for prediction.

Construction of the PAIL web server. We have implemented our PAIL
as an easy-to-use web server, which can be accessed from http://
bioinformatics.lcd-ustc.org/pail. The prediction page of PAIL is shown in
Fig. 1. Users can paste the protein sequence either in raw sequence or
FASTA format (one or more sequences) into the text form and obtain the
prediction result by clicking on the ‘‘Submit’’ button. In addition, the
prediction result is downloadable in a tab-deliminated plain text by
clicking on the word here in the sentence of ‘‘Download the TAB-deli-
minated data file from here’’.

Results

Functional analysis of acetylated proteins

To determine which types of proteins are acetylated, we
have downloaded the GO annotation files for Uniprot from
EBI-GOA (http://www.ebi.ac.uk/GOA/) for analyzing.
Fig. 1. The predictio
In our non-redundant data set with 89 acetylated proteins,
we observe 329 distinct GO categories. Table 1 shows the
top five Gene Ontology (GO) entries of biological
processes, molecular functions, and cellular components
of acetylated proteins.

The most frequent GO item of biological process in
which acetylated proteins are involved in is ‘‘regulation
of transcription, DNA-dependent’’ (56 proteins). The
other four significantly biological processes are ‘‘tran-
scription’’ (53 proteins), ‘‘regulation of transcription’’
(16 proteins), ‘‘regulation of transcription from RNA
polymerase II promoter’’ (10 proteins), and ‘‘signal trans-
duction’’ (10 proteins). The most enriched GO group of
molecular function is ‘‘DNA binding’’ (59 proteins),
while the other four highly abundant molecular functions
are ‘‘protein binding’’ (43 proteins), ‘‘transcription factor
activity’’ (31 proteins), ‘‘zinc ion binding’’ (19 proteins),
and ‘‘metal ion binding’’ (19 proteins). Again, the most
abundant GO entry of cellular component is ‘‘nucleus’’
(66 proteins), and the other four highly frequent cellular
components are ‘‘cytoplasm’’ (11 proteins), ‘‘mitochon-
drion’’ (9 proteins), ‘‘membrane’’ (7 proteins), and ‘‘chro-
matin’’ (6 proteins).

Taken together, the analyses propose that protein acet-
ylation plays important roles in transcription regulation
and signal transduction. Also, the functions of acetylated
proteins are quite diverse. Thus, the data set is suitable
for our prediction work as training data.
n page of PAIL.

http://bioinformatics.lcd-ustc.org/pail
http://bioinformatics.lcd-ustc.org/pail
http://www.ebi.ac.uk/GOA/


Table 1
The top five GO categories of biological process, molecular function, and cellular component of acetylated proteins

GO symbol Name of Gene Ontology No. of proteins

Top five biological processes

GO:0006355 Regulation of transcription, DNA-dependent 56
GO:0006350 Transcription 53
GO:0045449 Regulation of transcription 16

Regulation of transcription from RNA polymerase II
GO:0006357 Promoter 10
GO:0007165 Signal transduction 10

Top five molecular functions

GO:0003677 DNA binding 59
GO:0005515 Protein binding 43
GO:0003700 Transcription factor activity 31
GO:0008270 Zinc ion binding 19
GO:0046872 Metal ion binding 19

Top five cellular components

GO:0005634 Nucleus 66
GO:0005737 Cytoplasm 11
GO:0005739 Mitochondrion 9
GO:0016020 Membrane 7
GO:0000785 Chromatin 6
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Performance evaluation

We have adopted four frequently considered measure-
ments: accuracy (Ac), sensitivity (Sn), specificity (Sp), and
Mathew correlation coefficient (MCC). Accuracy (Ac)
illustrates the correct ratio between both positive (+) and
negative (�) data sets, while sensitivity (Sn) and specificity
(Sp) represent the correct prediction ratios of positive (+)
and negative data (�) sets, respectively. But when the num-
ber of positive data and negative data differ too much from
each other, the Mathew correlation coefficient (MCC)
should be included to evaluate the prediction performance.
The value of MCC ranges from �1 to 1, and a larger MCC

value stands for better prediction performance.
Among the data with positive hits by PAIL, the real pos-

itives are defined as true positives (TP), while the others are
defined as false positives (FP). Among the data with nega-
tive predictions by PAIL, the real positives are defined as
false negatives (FN), while the others are defined as true
negatives (TN).

The performance measurements of sensitivity (Sn), spec-
ificity (Sp), accuracy (Ac), and Mathew correlation coeffi-
cient (MCC) are all defined as below

Sn ¼ TP
TP þ FN

; Sp ¼ TN
TN þ FP

;

Ac ¼ TP þ TN
TP þ FP þ TN þ FN

; and

MCC ¼ ðTP � TNÞ � ðFN � FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞ � ðTN þ FP Þ � ðTP þ FPÞ � ðTN þ FNÞ

p :

In addition to assess whether PAIL is unbiased and
robust for prediction, we adopt the standard evaluations
of Jack–Knife validation and n-fold (6-, 8-, and 10-fold
in this work) cross-validation. For Jack–Knife validation,
one sample is removed from the training data set at a time
and the Ac, Sn, Sp, and MCC are re-calculated, respective-
ly. The final results are the average of all the Ac, Sn, Sp,
and MCC of the Jack–Knife validation. As previously pro-
posed [27], we have also taken an additional test with n-
fold (6-, 8-, and 10-fold in this work) cross-validation.
The tests are repeated 20 times and the Ac, Sn, Sp, and
MCC are re-computed each time. The average Ac, Sn,
Sp, and MCC are adopted as the final value.

Prediction performance of PAIL

In this work, the PAPs with window length of 9, 11, and
13 were examined. Also, three cut-offs of high, medium,
and low thresholds were adopted in each condition. A spec-
ificity of �95% was adopted for high stringency, while the
medium and low stringencies denote the specificities of
�90% and �85%, respectively. Then the prediction perfor-
mances of self-consistency, Jack–Knife validation and n-
fold (6-, 8-, and 10-fold in this work) cross-validation have
been calculated and shown in Tables 2–4, respectively.

With window length of 9, the accuracies of three thresh-
olds are 86.37%, 85.75%, and 82.65%, respectively (see in
Table 2). The sensitivity (Sn), specificity (Sp), and MCC

are 49.19–69.92%, 96.72–86.19%, and 0.5584–0.5277. Also,
the results of Jack–Knife validation and n-fold (6-, 8-, and
10-fold) cross-validation proposes our prediction are
robust. In Table 3, the accuracy fluctuates from 88.14%
to 84.60%, with the window length of 11. When the PAPs
are chosen with length of 13, the accuracy is 89.21–85.13%
(see in Table 4). And MCC fluctuates from 0.6608 to
0.6111. Again, the validation results suggest that the
prediction is accurate and robust. In this condition, the
sensitivity (Sn) and specificity (Sp) are 61.38–79.68% and
96.95–86.65%, respectively.



Table 2
The prediction performance of self-consistency, Jack–Knife validation, and n-fold validation of PAIL with window length of 9

Window length (9) Threshold Accuracy (%) Sensitivity (%) Specificity (%) MCC

Self-consistency High 86.37 49.19 96.72 0.5584
Medium 85.75 64.63 91.63 0.5739
Low 82.65 69.92 86.19 0.5277

Jack–Knife validation High 84.25 42.28 95.93 0.4785
Medium 81.42 53.25 89.25 0.4385
Low 78.76 60.16 83.94 0.4167

6-fold cross-validation High 83.27 40.63 95.13 0.4439
Medium 80.92 51.38 89.15 0.4207
Low 79.71 55.33 86.50 0.4126

8-fold cross-validation High 83.49 41.06 95.29 0.4518
Medium 81.39 52.22 89.51 0.4341
Low 78.26 59.33 83.52 0.4042

10-fold cross-validation High 83.74 41.40 95.53 0.4606
Medium 81.34 51.99 89.51 0.4320
Low 78.52 60.00 83.68 0.4118

Table 3
The prediction performance of self-consistency, Jack–Knife validation, and n-fold validation of PAIL with window length of 11

Window length (11) Threshold Accuracy (%) Sensitivity (%) Specificity (%) MCC

Self-consistency High 88.14 56.50 96.95 0.6232
Medium 87.08 72.36 91.18 0.6264
Low 84.60 78.46 86.31 0.5967

Jack–Knife validation High 84.96 43.90 96.38 0.5046
Medium 83.19 53.66 91.40 0.4799
Low 80.00 60.98 85.29 0.4423

6-fold cross-validation High 84.23 43.66 95.52 0.4805
Medium 82.50 52.93 90.73 0.4614
Low 80.12 59.78 85.78 0.4393

8-fold cross-validation High 84.54 44.13 95.79 0.4915
Medium 82.59 53.13 90.79 0.4641
Low 80.27 59.80 85.97 0.4422

10-fold cross-validation High 84.65 44.27 95.88 0.4950
Medium 82.72 53.21 90.93 0.4674
Low 80.34 60.14 85.97 0.4451

Table 4
The prediction performance of self-consistency, Jack–Knife validation, and n-fold validation of PAIL with window length of 13

Window length (13) Threshold Accuracy (%) Sensitivity (%) Specificity (%) MCC

Self-consistency High 89.21 61.38 96.95 0.6608
Medium 87.97 73.58 91.97 0.6499
Low 85.13 79.68 86.65 0.6111

Jack–Knife validation High 86.11 52.85 95.36 0.5551
Medium 84.42 61.79 90.72 0.5348
Low 82.92 63.82 88.24 0.5097

6-fold cross-validation High 85.42 48.31 95.75 0.5266
Medium 83.58 59.76 90.20 0.5091
Low 82.17 62.20 87.73 0.4886

8-fold cross-validation High 85.53 51.40 95.02 0.5353
Medium 83.81 60.26 90.36 0.5160
Low 82.34 62.52 87.85 0.4931

10-fold cross-validation High 85.66 51.59 95.14 0.5396
Medium 83.69 60.29 90.21 0.5136
Low 82.17 62.72 87.58 0.4905
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Furthermore, to compare the prediction performance
of PAPs with different window lengths, we also diagram
their ROC (Receiver Operating Characteristic) curves
(sensitivity vs. 1-specificity) shown in Fig. 2. Three curves
are quite similar. However, when the specificity is greater
than 80% (that is to see, the value of 1-speficity is <0.2),
the performance of PAPs with window length of 13 is
better than others. In this regard, the PAPs with window



Fig. 2. The receiver operating characteristic (ROC) curve to diagram the prediction performances of PAIL with window length of 9, 11, and 13.
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length of 13 have been employed in current PAIL
system.

Discussion

PAIL is a novel in silico acetylation site prediction sys-
tem with high-performance and may provide valuable
insight into further experimentation. The study of protein
acetylation is still in its infancy, and many problems remain
to be resolved. For example, the prediction performance of
PAIL is limited by the lack of a large amount of data sets
as the known protein acetylation sites are still far fewer
than those of phosphorylation [29,30]. As large-scale
screening strategies have been applied to identify the pro-
tein acetylation sites systematically [8,14,24], more and
more bona fide data can be generated and integrated into
the PAIL system to optimize its computing power. In addi-
tion, there have been �30 HATs (histone acetyltransfer-
ases) and >18 HDACs (histone deacetylases) discovered
[5,17]. Thus, a more rigorous predictor in a HAT-specific
mode is also desirable. However, due to the limited amount
of data, such a computational tool currently is not avail-
able. In addition, some other computational approaches
could be applied, i.e., group-based prediction and scoring
algorithm (GPS) [29,30] and support vector machines
(SVMs) [31]. These methods could be employed separately
or combined together to obtain potentially better perfor-
mance. Nevertheless, with high-accuracy PAIL provides
the first computational tool for identifying protein acetyla-
tion sites in silico.
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