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Data Processing 

(+) data set 

We denote the amino acid residues that undergo methylation modification as positive 

samples (+), while those non-methylatable residues are designated as negative samples (-). Firstly, 

we obtained the data set of methylation sites from the feature table of SWISS-PROT (version 48) (1). 

Only experimentally verified methylation sites were selected. Potential methylation sites with 

keywords of “By similarity”, “Potential” or “Probable” in SWISS-PROT’s comments were removed. 

In total, we obtained 328 positive (+) sites, including lysines (148 items), arginines (76 items), 

histidines, asparagines and other residues (see in Table S1). We then searched the PubMed with the 

keywords of “methylation lysine” and “methylation arginine” for information on lysine and arginine 

methylation, respectively. From ~1,700 scientific articles, we collected 107 and 264 unambiguously 

and experimentally verified methylation sites for lysine and arginine, separately. Finally, we 

combined the newly curated data and the data derived from SWISS-PROT into an integrated 

positive (+) data set. Since only lysines (227 items) and arginines (273 items) had enough data 

entries to train and test the SVM models, we focused on the methylation of lysine and arginine 

residues and did not include other residues into consideration. The statistics of the (+) data 

processing is listed in Table S2. 
 

(-) data set 

As previously described (2-4), the (-) sites are composed of non-annotated lysine/arginine 

sites in the same proteins from which (+) sites are taken, instead of using proteins randomly picked 

from the SWISS-PROT database. Thus, both (+) and (-) sites are extracted from the same protein 

pool, making our test more strict. Clearly the (-) sites may contain some false negative samples – 

these lysine/arginine sites in fact undergo methylation but are not known so far. As a result, the 

SVMs’ performance measurements will overestimate the false positive rates. However, without a 

reliable standard (-) set, this overestimation is inevitable. The detailed information of both (+) and (-) 

data used are listed in Table S2. 
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Algorithm design and validation 

Sequence coding 

We employed a traditional sliding window strategy to represent methylation sites. The 

considered window size was 14 symmetrical residues because preliminary tests show that 14 is the 

minimum size to achieve good performance. A fragment of 14 amino acids centering on methylated 

residues was adopted to represent the considered methylation site. Since there is always K or R in 

the considered methylation site we didn’t include the center methylation site into the encoding 

fragment. We chose orthogonal binary coding scheme to transform protein sequences into numeric 

vectors. For example, glycine was designated as 00000000000000000001, alanine designated as 

00000000000000000010, and so on. The length of final vector representing the methylated site is 

7×2×20=280. 

SVM and Parameter search: 

The support vector machine (SVM) is a new machine learning method, which has been 

applied for many kinds of pattern recognition problems. The principle of the SVM method is to 

transform the samples into a high dimension Hilbert space and seek a separating hyperplane in the 

space. The separating hyperplane, which is called the optimal separating hyperplane, is chosen in 

such a way as to maximize its distance from the closest training samples. As a supervised machine 

learning technology, SVM is well founded theoretically on Statistical Learning Theory30, 31. The 

SVM usually outperforms other traditional machine learning technologies, including the neural 

network and the k-nearest neighbor classifier. Recently, SVM has been successfully adopted to solve 

many biological problems, such as predicting protein subcellular locations (5), protein secondary 

structures (5,6), tumor classification (7) and phosphorylated sites (2). 

 

In this work, we have employed LIBSVM (8) to build SVM models. The considered 

parameters include: kernel function types (RBF and polynomial), gamma, the penalty parameter C. 

The parameters combination used for training is shown in Table 1. 
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Selection of (-) sites and 7-fold cross-validation 

Obviously there are many more (-) sites than (+) sites in our data sets. The SVMs trained 

with all these (-) sites will overweigh (-) sites and subsequently predict all sites as (-) sites. Hence we 

have employed a strategy, which is usually named “under-sampling” and has been used in previous 

work (2,9), to overcome the imbalance between (+) sites and (-) sites. At first, all the (+) sites and (-) 

sites were combined and then divided equally into seven parts, keeping the same distribution of (+) 

and (-) sites in each part. Then six parts were merged into a training data set while the seventh part 

was taken as a test data set. Since there are more under-sampling (-) sites in the training data than 

those of (+) sites, we reduced the number of (-) sites to keep (+) sites and (-) sites balanced. SVM 

models were then trained on the balanced training set and tested on the test data set. Seven-fold cross 

validation was carried out. The average accuracy of cross validation was used to estimate the 

performance.  
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Performance evaluation of MeMo  

Performance measurements  

We have adopted four frequently used measurements: accuracy, specificity, sensitivity and 

Mathew correlation coefficient (MCC), to evaluate our prediction system’s performance. Accuracy 

represents the correct ratio among both positive and negative data sets, while sensitivity and 

specificity illustrate the correct prediction ratios of positive and negative data sets respectively. But 

when the number of positive data and negative data differ too much from each other, the Mathew 

correlation coefficient (CC) should be calculated to assess the prediction performance. The value of 

MCC ranges from -1 to 1, and a larger MCC stands for better prediction performance. 

 

Among the data with positive predictions by MeMo, the real positives are defined as true 

positives (TP), while the others are defined as false positives (FP). Among the data with negative 

predictions by MeMo, the real positives are defined as false negatives (FN), while the others are 

defined as true negatives (TN). 

 

Then the measurements are defined as follows: 
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Performance Comparison 

The parameter combinations and more details about the accuracy of MeMo are shown in 

Table 1. Performance comparison of MeMo to previous work (Daily et al.) (10) is shown in Table S3. 

To predict methylation sites, Daily et al. used numerous features including amino acid frequencies, 
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aromatic content, flexibility scale, net charge, hydrophobic moment, beta entropy, disorder 

information and PSI-BLAST profiles. A principal component analysis was applied to reduce 

dimensionality. Compared with Daily’s method, MeMo uses only sequence information and doesn’t 

need dimensionality reduction. On the same dataset “From SWISS-PROT”, MeMo’s performance is 

comparable to Daily’s. Adding the manually collected data from literatures improves the 

performance of MeMo to a great extent. There are two corresponding reasons: first, integrating more 

data means more information to SVM, resulting in a more accurate model; second, manually mined 

data are experimental verified and reported by the literature. Thus, they are more qualified compared 

to those from SWISS-PROT database. 
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Sequence logos 

For MeMo, the sensitivity on lysine and arginine sites is nearly identical. And the better 

accuracy for arginine sites over lysine is entirely due to increased specificity. Why is the 

performance of our SVM models on arginine sites much better than on lysines sites? We suppose 

that in the current available data, sequences profiles of the flanking regions of methylated arginine 

sites might be of higher specificity. To validate this hypothesis we utilize the WebLogo program (11) 

to generate sequence logos, which represent residue compositions in an intuitive way. The 

methylated arginine sites (coded by “R”) are often in R-G rich regions which are much different 

from non-methylated arginine sites (Figure S2). In contrast, the methylated lysine sites (coded by 

“K”) are less conservative (Figure S3). Thus, the sequence pattern of methylated arginine sites is 

more conservative with higher specificity than methylated lysine sites. And this will lead MeMo to 

think unmethylated lysine sites are in fact methylated to a greater extent than arginine sites. Another 

potential reason might be that there exist many more methylated lysine sites than arginine sites that 

remain to be experimentally detected. Continuously more comprehensive experimental analyses 

remain to be performed to address this issue. 



8

www server 

Based on the trained SVM models a web server interface is built up, which is freely available 

at http://www.bioinfo.tsinghua.edu.cn/~tigerchen/memo.html. The data sets are available upon 

request. The screenshots of Memo are shown in Figure 1 and Figure S1. 

 

http://www.bioinfo.tsinghua.edu.cn/~tigerchen/memo.html
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Functional analysis of Methylated Proteins 

In order to determine which types of proteins will be methylated, we search for Gene 

Ontology from QuickGO (http://www.ebi.ac.uk/ego/). The Table S4 and Table S5 show top five 

Gene Ontology (GO) categories of biological processes, molecular functions and cellular 

components for lysine methylated proteins and arginine methylated proteins, separately. In our 

non-redundant data set, there are 61 lysine methylated and 92 arginine methylated proteins, 

respectively. 

For the 61 lysine methylated proteins, we have observed 213 distinct GO groups. And here 

we provide the top five GO items of biological processes, molecular functions and cellular 

components, respectively (Figure S4). The most abundant GO item of biological process in which 

lysine methylated proteins are implicated is “transport” (9 proteins). The other four biological 

processes are “chromosome organization and biogenesis (sensu Eukaryota)” (8 proteins), 

“nucleosome assembly” (7 proteins), “protein biosynthesis” (6 proteins) and “electron transport” (4 

proteins). The most enriched GO group of molecular function is “nucleotide binding” (12 proteins). 

And the most frequent GO entry of cellular component is “nucleus” (10 proteins).  

For the 92 arginine methylated proteins, we have observed 324 distinct GO groups. And here 

we provide the top five GO items of biological processes, molecular functions and cellular 

components, respectively (Figure S5). The top five GO items of biological process are “mRNA 

processing” (15 proteins), “transport” (15 proteins), “transcription” (13 proteins), “regulation of 

transcription, DNA-dependent” (13 proteins) and “nuclear mRNA splicing, via spliceosome” (7 

proteins). The most enriched GO of molecular function is “protein binding” (12 proteins). The other 

four GO categories are “RNA binding” (33 proteins), “nucleotide binding” (30 proteins), “nucleic 

acid binding” (29 proteins) and “DNA binding” (17 proteins). And the most frequent GO of cellular 

component is “nucleus” (41 proteins). 

Taken together, the functional analysis of the methylated proteins proposes that the functions 

of these proteins are quite diverse. Thus, the data set is suitable for our prediction work as training 

data.  

http://www.ebi.ac.uk/ego/
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SUPPLEMENTARY LENGEND 
SUPPLEMENTARY FIGURES 
 
FIGURE S1- The screenshot of MeMo, showing prediction results 
 



12

FIGURE S2. The sequence logos of arginine sites. A taller letter indicates that this kind of residue is 
more frequently used.  
(a) The non-methylated arginine sites and their flanking sequences.  
(b) The methylated arginine sites’ pattern, rich of R and G. 

 

(a) 
 

(b) 
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FIGURE S3. The sequence logos of lysine sites. A taller letter indicates that this kind of residue is 
more frequently used.  
(a) The non-methylated lysine sites and their flanking sequences.  
(b) The methylated lysine sites and their flanking sequences. There are not large differences 
between (a) and (b).  

(a) 

(b) 
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SUPPLEMENTARY TABLES 
 

TABLE S1 - The numbers of methylated sites on different types of residues in SWISS-PROT. 
 

Residue type 
Number of 

methylated sites 

Lysine 148 

Arginine 76 

Histidine 14 

Asparagine 17 

Cysteine 5 

Others 68 

In total 328 
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TABLE S2. Summary of (+) and (-) sites of lysine and arginine from both SWISS-PROT and 
manually collected data. 
 

Lysine Arginine 
Data Set 

(+) sites (-) sites (+) sites (-) sites 

From SWISS-PROT 148 -* 76 -* 

From manual collection 107 -* 264 -* 

In total 227 661 273 1395 

After Homology-reduced (30%) 145 579 247 1211 

*: the numbers are unavailable. We have firstly collected the positive (+) sites, after all the (+) sites 
are collected and merged together. Then we have retrieved non-annotated lysine/arginine sites as (-) 
sites from which the same proteins (+) sites were chosen, instead of randomly picking other proteins 
from the SWISS-PROT database. 
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TABLE S3. Performance comparison between MeMo and the previous work (10). 
 

Method Data set 
Residue 

Type 
Accurac

y
Sensitivit

y
Specificit

y
MCC 

Arginine 77.9% 73.6% 82.2% 0.40*Daily et al, 
2005 (10) 

From 
SWISS-PROT Lysine 63.1% 65.9% 60.4% 0.13*

Arginine 76.0% 70.6% 81.5% 0.37 
MeMo 

From 
SWISS-PROT Lysine 60.6% 66.2% 55.5% 0.11 

From 
SWISS-PROT Arginine 86.7% 69.6% 89.2% 0.54 MeMo 

+ Manual collection Lysine 67.1% 69.2% 66.7% 0.29 

*. Daily et al (10) didn’t give out MCC values. MCC values shown here are calculated based on Sensitivity (Sn)
and Specificity (Sp) values in their article (10). 
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TABLE S4. Top five Gene Ontology (GO) categories of biological processes, molecular functions 
and cellular components in lysine methylated proteins. 
 

GO Symbol Name of Gene Ontology No. of Proteins 
Top five biological process  
GO:0006810 transport 9
GO:0007001 chromosome organization and biogenesis (sensu Eukaryota) 8
GO:0006334 nucleosome assembly 7
GO:0006412 protein biosynthesis 6
GO:0006118 electron transport 4

Top five molecular function  
GO:0000166 nucleotide binding 12
GO:0003677 DNA binding 11
GO:0005515 protein binding 8
GO:0005525 GTP binding 8
GO:0046872 metal ion binding 7

Top five cellular component  
GO:0005634 nucleus 10
GO:0005694 chromosome 8
GO:0005737 cytoplasm 8
GO:0000786 nucleosome 7
GO:0016020 membrane 7
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TABLE S5. Top five Gene Ontology (GO) categories of biological processes, molecular functions 
and cellular components in arginine methylated proteins. 
 

GO Symbol Name of Gene Ontology No. of Proteins 
Top five biological processes  
GO:0006397 mRNA processing 15
GO:0006810 transport 15
GO:0006350 transcription 13
GO:0006355 regulation of transcription, DNA-dependent 13
GO:0000398 nuclear mRNA splicing, via spliceosome 7

Top five molecular functions  
GO:0005515 protein binding 34
GO:0003723 RNA binding 33
GO:0000166 nucleotide binding 30
GO:0003676 nucleic acid binding 29
GO:0003677 DNA binding 17

Top five cellular components  
GO:0005634 nucleus 41
GO:0016020 membrane 26
GO:0016021 integral to membrane 18
GO:0030529 ribonucleoprotein complex 16
GO:0005737 cytoplasm 13
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