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Zinc is one of the most essential metals utilized by organisms, and zinc-binding proteins play an important
role in a variety of biological processes such as transcription regulation, cell metabolism and apoptosis.
Thus, characterizing the precise zinc-binding sites is fundamental to an elucidation of the biological functions
and molecular mechanisms of zinc-binding proteins. Using systematic analyses of structural characteristics,
we observed that 4-residue and 3-residue zinc-binding sites have distinctly specific geometric features.
Based on the results, we developed the novel computational program Geometric REstriction for Zinc-binding
(GRE4Zn) to characterize the zinc-binding sites in protein structures, by restricting the distances between
zinc and its coordinating atoms. The comparison between GRE4Zn and analogous tools revealed that it
achieved a superior performance. A large-scale prediction for structurally characterized proteins was
performed with this powerful predictor, and statistical analyses for the results indicated zinc-binding pro-
teins have come to be significantly involved in more complicated biological processes in higher species
than simpler species during the course of evolution. Further analyses suggested that zinc-binding proteins
are preferentially implicated in a variety of diseases and highly enriched in known drug targets, and the pre-
diction of zinc-binding sites can be helpful for the investigation of molecular mechanisms. In this regard,
these prediction and analysis results should prove to be highly useful be helpful for further biomedical
study and drug design. The online service of GRE4Zn is freely available at: http://biocomp.ustc.edu.cn/
gre4zn/. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical
Implications. Guest Editor: Yudong Cai.
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1. Introduction

Although the total net content of zinc in organisms is very low, it is
still essential for survival. Free or loosely bound zinc ions function as
an intracellular signal [1], and were shown to act as a second messen-
ger recently [2]. However, the major role of the zinc ion is tightly co-
ordinated with protein residues [3], and it is estimated that as mach
as 10% of the human proteome is made up of potential zinc-binding
proteins [4]. A large number of studies have been conducted to de-
scribe the molecular mechanisms of zinc-binding [5,6]. Although
zinc ions can be penta- or even hexa- coordinated, tetrahedral coordi-
nation is the predominant form for most of the zinc-binding sites [6].
The majority of the identified zinc-binding residues are made up of
cysteine (C) and histidine (H) [3], while various other residues, such
as glutamic acid (E), aspartic acid (D), serine, threonine, lysine and
methionine can also coordinate with zinc ions [5]. In fact, cysteine,
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histidine, aspartic acid and glutamic acid constitute almost all of the
zinc-coordinating protein residues, while oxygen, nitrogen and sulfur
donors in water molecules or other free ligands can also serve as co-
ordinating moieties for zinc ions [5,6]. As a structural component that
binds with amino acid (AA) residues, the zinc ion is critical for the
functions of proteins, such as helping to stabilize the structure of
“zinc-finger” transcription factors [3,7] and acting as the catalytic
site in enzymes [3]. Thus, it is critical to identify zinc-binding sites
in order to dissect the molecular functions and mechanisms in the
proteins that contain them.

To date, a variety of experimental approaches, including X-ray dif-
fraction, Nuclear Magnetic Resonance (NMR) and X-ray absorption
fine structure (XAFS) techniques have been employed to identify
zinc-binding residues in proteins [5]. However, since these experi-
mental studies are both time- and labor-intensive, only a small pro-
portion of potential zinc-binding proteins have characterized, even
though genome-scale analysis have suggested that there are thou-
sands of zinc-binding proteins [4]. Recently, a number of computa-
tional approaches have made contributions to this area to promote
the discovery of zinc-binding proteins together with their binding
sites. Since zinc ions only coordinate with restricted types of residues
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and the binding seems to follow certain specific patterns, a series of pre-
diction studies were carried out based on sequence analysis [8–17]. A
variety of algorithms were employed alone or in combination in these
studies, including support vector machines (SVMs) [10,11,13,14,17],
neural networks (NNs) [9,11,13,17], machine learning (ML) [12] and
the homology-based method of PHI-Blast [8,15]. Since zinc-binding is
heavily dependent on the three-dimensional conformations of protein
residues, the structure-based predictions might be expected to achieve
a better performance [5,6].

Previously, a handful of computational studies have contributed to the
effort to predict zinc-binding sites based on protein structures [18–27].
Structural features such as secondary structure states (SS), solvent-
accessible surface areas (SASAs), inter-residue distance matrices, geo-
metrical features and residue properties were combined with various
algorithms including NNs [18], SVMs [20,24], machine learning [24],
random forest algorithm [21], and Bayesian classifier [22] in an effort
to provide accurate predictions. Furthermore, the empirical Fold-X
force field, Rosetta software and the fragment transformation method
(FTM) were also employed to characterize zinc-binding structures
[19,25,27] (Table 1). Recently, Zheng et al. presented a powerful com-
putational framework which integrates various features including
sequence, structure and network properties with the random forest
algorithm to predict zinc-binding sites [28]. In addition, we previously
developed a structure-based method (TEMSP or 3D TEmplate-based
Metal Site Prediction) for predicting zinc-binding sites [26]. In these
studies, complex classifiers, force field-based modeling and template-
based calculation among these approaches afforded excellent results.

In this work, we systematically analyzed the structural features of
zinc-binding sites from a well characterized and non-redundant
dataset of 601 zinc-binding sites in 431 proteins. We observed that
4-residue (4-res) and 3-residue sites (3-res) have different sequential
and structural features, such as sequence length distribution, AA pref-
erences, SSs and geometrical distance. In particular, we found that the
geometrical distance between zinc and the binding residue was spe-
cifically restricted in the 4-res and 3-res binding sites, respectively.
Based on these observations, we developed a geometric restriction
approach to characterize zinc-binding sites from protein structures.
The geometrical distance ranges for the 4-res and 3-res binding
were respectively calculated from the zinc-binding data and then
were employed to predict potential zinc-binding residues. The
Table 1
Summary of a number of previous studies on the prediction of zinc-binding.

Software PMID Algorithm

Sequence-based predictions
Andreini et al. [8] 14962940 PHI-BLAST
Lin et al. [9] 15912584 NN
Passerini et al. [11] MLP 16927295 SVM, NN
Lin et al. [10] SVMProt 17254297 SVM
Passerini et al. [12] Zinc Finder 17280606 ML
Shu et al. [14] PredZinc 18245129 SVM
Lippi et al. [13] MetalDetector 18635571 SVM, NN
Andreini et al. [15] 19697929 PHI-BLAST
Bertini et al. [16] 20443034 HMM
Passerini et al. [17] MetalDetector v2.0 21576237 SVM, NN

Structure-based predictions
Sodhi et al. [18] MetSite 15313626 NN
Schymkowitz et al. [19] 16006526 Fold-X
Babor et al. [20] CHED 17657805 SVM
Goyal and Mande [23] 17847089 Template-based
Ebert and Altman [22] FEATURE 18042678 Bayesian
Bordner [21] 18940825 Random forest
Levy et al. [24] SeqCHED 19173310 SVM, ML
Wang et al. [25] Rosetta 20054832 Rosetta
Zhao et al. [26] TEMSP 21414989 Template-based
Lu et al. [27] 22723976 FTM
Zheng et al. [28] Zincidentifier 23166753 Random forest
software program Geometric REstriction for Zinc-binding, http://
biocomp.ustc.edu.cn/gre4zn/ (GRE4Zn) was implemented, with a
sensitivity of 97.68% and a precision of 98.93% under an Intersection
over Union Ratio (IoUR) ≧0.5, respectively, while the values were
95.56% and 96.58% under IoUR = 1.0. With this superior predictor,
we performed a large-scale study on the structurally characterized
proteins in PDB database [29]. Furthermore, we systematically analyzed
the potential zinc-binding sites for Escherichia coli, Saccharomyces
cerevisiae and Homo sapiens. The statistical analyses of gene ontology
(GO) annotations for the results suggested that the enriched biological
processes were different for different species. It was observed that
zinc-binding proteins were involved in more complicated biological
processes in higher organisms than lower organisms, which implies
an ongoing evolution of the functions of zinc-binding proteins. Further
analyses revealed that zinc-binding proteins are also significantly
enriched in cancer genes and drug targets, and could serve as a useful
resource for further biomedical investigation and drug design.

2. Materials and methods

2.1. Data preparation and analysis

The dataset of experimentally identified zinc-binding sites have
been retrieved according to the methods described in our recent
study [26]. The zinc-binding protein structures of less than 95% se-
quence identity were retrieved while redundant chains were re-
moved. The “abnormal” zinc sites with multiple conformations, less
than three coordinating atoms, metal atom occupancy lower than
0.5, or a B factor higher than 90, were discarded. Since the excess re-
dundancy of a large number of homologous sites could lead to the
overestimation of prediction accuracy, the zinc-binding proteins
were clustered at a sequence identity cutoff of 30% with the CD-HIT
program [30], and only one representative protein chain was retained
from each cluster. Furthermore, 99 protein structures from the
resulting 431 proteins were randomly selected as the testing dataset,
while the others were considered as the training dataset.

Since almost all zinc-binding residues are cysteines, histidines,
glutamic acids and aspartic acids (CHEDs), in this study, only the
sites with CHED residues were reserved for consideration. The dataset
of 601 zinc-binding sites in 431 proteins was divided into two subsets
according to the size of their ligands. The larger subset of “4 residues
(4-res)” contains 473 sites in 317 proteins, in which four of the coor-
dinating ligands are CHED residues, while the smaller subset of “3 res-
idues (3-res)” has 128 sites in 123 proteins, in which the tetrahedral
ligands were constituted with three CHED residues and another
donor of oxygen, nitrogen or sulfur from either a water molecule or
other free ligands. The distances between atoms were computed for
the 4-res and 3-res datasets, respectively. For large-scale prediction,
the protein structures determined by X-ray with a resolution of less
than 3.0 Å were retrieved from the PDB database [29]. The protein
structures were integrated with a sequence similarity threshold of
30% in organism-specific statistical analyses of E. coli, S. cerevisiae
and H. sapiens. From these large-scale analyses, 377, 411 and 1027
structure chains were predicted to contain zinc-binding sites among
1263, 726 and 3087 protein structures, respectively, from the PDB
database.

The SS and SASA analyses were carried out by STRIDE [31]. The
enrichment analyses of the annotations of SCOP structural clas-
sifications, GO, cancer genes and drug targets were performed with
a hypergeometric distribution [31]. The comparison of the SCOP
structural classifications for 4-res and 3-res zinc-binding was per-
formed with Yates' Chi-square (χ2) test with the 2 × 2 contingency
table [31]. The GO annotation file for PDB was downloaded from the
GOA database at the EBI (http://www.ebi.ac.uk/goa) [32], while the
SCOP structural classification of proteins data was downloaded from
the SCOP database (http://scop.mrc-lmb.cam.ac.uk/scop/) [33]. In
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addition, the protein structures in this study were visualized in Pymol
(http://www.pymol.org/) [34].

2.2. The geometric restriction approach (GRE)

Previous studies reviewed that zinc-coordinating atoms (zcAtom)
are different in C, H, E and D residues: i.e. an SG atom for C, ND1 or
NE2 atom for H, OE1 or OE2 atom for E, and OD1 or OD2 atom for D
[5,6]. Although one residue may coordinate two zinc ions with differ-
ent zcAtoms, in this study, for one residue it was considered that only
one zcAtom coordinated.

We predict zinc-binding residues from the protein structure based
simply on geometric restriction, and the prediction results of the 4-res
and 3-res types were first computed separately and subsequently
merged together. The prediction effort was conducted as follows.

Given a certain protein structure, the CHED residues in the protein
were exhaustively combined to retrieve quadruplets or triplets. From
the dataset, it was observed that the longest distance among the Cα
atoms for zinc-binding residues is approximately 12 Å, while exhaus-
tive tests of the distance limitation for the Cα atoms from 14 Å to
20 Å did not result in any difference in the prediction. Thus, only
CHED residues within 13 Å were considered in this study. An exten-
sive search of the tetrahedral coordination model (TCM) was carried
out for the zcAtoms.

For the 4-res type, the center of the four zcAtoms was considered
as the site of a potential zinc ion:

zinc x;y;zð Þ ¼
1
4

∑
1≤i≤4

zcAtomi x;y;zð Þ ð1Þ

For the 3-res type, a virtual atom (vAtom)was added to simulate the
fourth coordinating atom from a water molecule or other free ligand.
Since the TCM was a tetrahedron with four sides while the distance be-
tween the zcAtoms is approximately 3.3 Å [5,6], for an ideal TCM, the
distance between the zinc and plane of the three zcAtom is 0.67 Å,
while thedistance between thevAtomand the plane of the three zcAtom
is 2.69 Å. Furthermore, the zinc and vAtom could both be on the same
side of the plane of the three zcAtom. Given the vector norV(x, y, z) as
the normal vector for the plane of the three zcAtom, we considered the
positions of the zinc ion and the virtual atom to be as follows:

Zinc x;y;zð Þ ¼
1
3

∑
1≤i≤3

zcAtomi x;y;zð Þ � 0:67 � norV x;y;zð Þ ð2Þ

vAtom x;y;zð Þ ¼
1
3

∑
1≤i≤3

zcAtomi x;y;zð Þ � 2:69 � norV x;y;zð Þ: ð3Þ

Based on the rationale computed from the training datasets
(Table 4), the proper TCM for which the distances between the zinc
ion and zcAtoms, the zinc ion and non-coordinating atoms and the
vAtom and non-coordinating atoms that were within the defined
ranges were preserved.

Finally, the prediction results of both the 4-res and 3-res types were
merged. If two residues combinations among the quadruplets and trip-
lets shared 3 residues, the results with less TCMs were dropped.

2.3. Performance evaluation

The performance evaluation was performed as described in our
previous study [26]. The IoUR was used to quantify the prediction
accuracy of the residues. Sensitivity (Sn) and precision (Pr) were
employed to evaluate the prediction performance. The measurements
were defined as shown below:

IoUR ¼ N predicted ligand residues∩actual ligand residuesð Þ
N predicted ligand residues∪actual ligand residuesð Þ ;
Sn ¼ TP
TP þ FN

and Pr ¼ TP
TP þ FP

:

2.4. Implementation of the online service

The GRE4Zn prediction server was implemented in PHP + Java.
One is able to submit the protein structure file in PDB format to the
server, and the calculation may be restrained to certain selected
chains by specifying the chain codes. The prediction results provided
after submission, and the user is then able to view the structure file of
the predicted binding residues.

3. Results

3.1. Systematic analyses reveal the differences between 4-res and 3-res
zinc-binding

Since the zinc ion is critical for protein function, the accurate pre-
diction of zinc-binding sites would help advance the understanding of
the biological functions and molecular mechanisms of zinc-binding
proteins. A number of studies which have contributed to this area
are summarized in Table 1, of which ten were sequence-based and
the other eleven were structure-based. Since a variety of residues
such as C, D, E and H were employed to coordinate with the zinc
ion, it is a complex matter to accurately predict all the bona fide resi-
dues. A number of approaches and algorithms have been employed to
characterize the zinc-binding residues in proteins and a variety of se-
quential or structural features considered.

In this study, since there were instances of both 4-res and 3-res
types of zinc-binding, we systematically analyzed the two types indi-
vidually. The analyses of the distribution of the zinc-binding residues
suggested that the sequence distances between the N-terminal and
C-terminal coordinating residues were diverse (Fig. 1A), especially
in the case of 3-res type. Previous studies showed that a variety of fea-
tures, including AA types, SSs and SASAs could be employed to predict
zinc-binding sites [18], and we present a series of such analyses in
this study. The distributions patterns of the four types of residues in
the zinc-binding sites are presented in Fig. 1B. It was observed that
in the 4-res type dataset, cysteines constituted more than 70% of the
binding residues, while more than half of the binding residues were
histidines in the 3-res. Interestingly, these results were consistent
with the distribution of AA types with structural and catalytic func-
tions in recent systematical analyses reported by Andreini et al.
[35]. However, there is no distinction between the distribution of
AA types in the 4-res and 3-res types of zinc-binding in their study
[35]. The SSs of these residues were also analyzed and are presented
in Fig. 1C. It was observed more than half of the residues in the
4-res zinc-binding type were in the turn regions of proteins, while
for the 3-res type, approximately a quarter of the residues were in
such regions. Furthermore, SASAs are an important structural feature
which indicates the proportion of exposure to solvent, so they were
analyzed and are presented in Fig. 1D. It was observed that less
than half of the surface area was exposed to solvent for most of the
residues. It is interesting that although the 4-res and 3-res types of
zinc-binding have a number of feature differences, they have a similar
pattern of surface area distribution.

In addition, we statistically analyzed the SCOP structural classifica-
tions for the zinc-binding proteins and the results are presented in
Tables 2 and 3. It was evident that small proteins were enriched in the
4-res zinc-binding proteins, while alpha + beta proteins and alpha/
beta proteins were over-represented in 3-res zinc-binding proteins
(Table 2). Furthermore, in contrast with the 4-res zinc-binding proteins,
there were more all beta proteins in the 3-res zinc-binding proteins
(Table 3).

Taken together, it is suggested that there are obvious differences
between the 4-res and 3-res types of zinc-binding. Therefore, we

http://www.pymol.org/


Fig. 1. The structural features of 4-res and 3-res zinc-binding. (A) The distribution of the sequence separations between zinc-binding residues. (B) The distribution of amino acid
types of zinc-binding residues in the 4-res and 3-res types of zinc-binding sites. (C) The distribution of the secondary structure types of zinc-binding residues in the 4-res and 3-res.
(D) The distribution pattern of the SASA ratio of zinc-binding residues in the 4-res and 3-res types of zinc-binding sites.
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conducted structure-based prediction of zinc-binding sites, and the
computational analyses of the 4-res and 3-res types were carried
out separately in this study.

3.2. The geometric restriction approach for zinc-binding site prediction

Although the above analyses did not indicate any distinct features
among the sequential and structural properties, it was observed that
the geometric features of zinc-binding were well defined. The dis-
tances of the zinc ion and coordinating atoms were calculated for
Table 2
The enriched SCOP classifications for zinc-binding proteins (p-value b 0.01).

Type Classification Zinc-binding Proteome E-ratioc p-value

Num.a Per.b Num. Per.

4-res Small proteins 135 82.82% 4,223 4.91% 16.86 1.70E−147
3-res Alpha + beta

proteins
36 50.00% 25,537 29.71% 1.68 2.37E−04

Alpha/beta
proteins

36 50.00% 28,306 32.93% 1.52 1.99E−03

a The number of proteins annotated.
b The proportion of proteins annotated.
c Enrichment ratio: the proportion in zinc-binding divided by the one in SCOP

database.
the 4-res and 3-res types of zinc-binding in the datasets separately,
and the results are presented in Fig. 2. Fig. 2A provides a model for
the 4-res zinc-binding of E. coli DNA polymerase III (PDB code:
1A5T), while the diphtheria toxin repressor (PDB code: 1BI0) from
Corynebacterium diphtheriae is shown in Fig. 2B. The distribution pat-
terns of the distance between the zinc ion and its coordinating atoms
for the 4-res and 3-res types are presented in Fig. 2C and D, respec-
tively. We found that there were different distance between the
Table 3
The comparison of SCOP classifications between the 4-res and 3-res zinc-binding
proteins.

Classification 4-res 3-res E-ratioc X2 p-value

Num.a Per.b Num. Per.

Small proteins 135 82.82% 2 2.78% 29.82 128.34 9.45E−30
Alpha + beta
proteins

27 16.56% 36 50.00% 0.33 26.78 2.29E−07

Alpha/beta
proteins

30 18.40% 36 50.00% 0.37 23.14 1.50E−06

All beta proteins 18 11.04% 19 26.39% 0.42 7.75 5.38E−03

a The number of proteins annotated.
b The proportion of proteins annotated.
c The enrichment ratio: the proportion of the 4-res zinc-binding proteins divided by

the one in the 3-res zinc-binding proteins.



Fig. 2. The distribution pattern of the distances between the zinc ion and coordinating atoms. (A) An example of 4-res zinc-binding (PDB code: 1A5T). (B) An example of 3-res
zinc-binding (PDB code: 1BI0). (C) The distribution pattern of the distances between the zinc ion and coordinating atoms in 4-res zinc-binding. (D) The distribution pattern of
the distances between the zinc ion and coordinating atoms in 3-res zinc-binding.
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zinc ion and various atoms. For example, the majority of the distances
between sulfur (S) and zinc (Zn) were found to be approximately
2.3–2.4 Å, while the distances for nitrogen (N) and the zinc ion
were 2.0–2.1 Å. Furthermore, the distance preferences for the same
type of atoms from the 4-res and 3-res types were also different. For in-
stance, the distances between oxygen (O) and zinc in the 4-res type
were extraordinarily diverse, while the distances for more than half of
the 3-res type were 2.3–2.4 Å. Table 4 presents the distance limitations
we derived from the training dataset, which is stable with a different
dataset, such as the testing dataset (data not shown). It is obvious that
although the coordination sphere is flexible, there were considerable
preferences and restraints on zinc-binding.

Based on these observations, we proposed a geometric restriction
(GRE) approach to predict zinc-binding residues from the protein
Table 4
The geometric distances employed in GRE4Zn for zinc-binding prediction. “–” indicates
that there is no limitation for these atoms.

Zn–S (Å) Zn–O (Å) Zn–N (Å) Zn–OXa (Å) Zn–C (Å)

The distance between zinc and binding atoms
4-res 1.60–3.05 1.70–2.55 1.78–2.55 – –

3-res 2.00–2.65 1.80–2.55 1.80–2.55 1.80–2.55 –

The distance between zinc and non-binding atoms
4-res >3.05 >2.55 >2.55 – –

3-res – >2.55 >2.55 – >2.55

a OX presents the virtual atom for zinc-coordination.
structure. The geometric features of zinc-coordination were employed
to characterize the zinc-binding residues. Using the GRE approach, we
developed the predictor program GRE4Zn. The positions of the zinc
ionwere simplymodeled using Eqs. (1) and (2), while the distances be-
tween the zinc ion and its coordinate atomswere checked to guarantee
the formation of the coordination bond. Subsequently, the distances be-
tween the zinc ion and non-coordinate atomswere examined to ensure
the correct coordination. It was assumed that the distance between the
zinc ion and non-coordinate atoms must be greater than the zinc ion
and its coordinating atoms. For the 3-res type, the distance between
the virtual atom and other atoms were checked to avoid clash. All the
distance ranges were directly calculated from the datasets, and all
these procedures were implemented into GRE4Zn.

3.3. Performance evaluation and comparison

To evaluate the prediction performance of GRE4Zn, the measure-
ments in our previous study of TEMSP [26] were employed. Since
there were several zinc-binding residues at every site, all of the bind-
ing residues should be determined. However, predictions with only
one mismatch were still valuable. In our previous study, IoUR was
employed, which quantifies the prediction accuracy by calculating
the correct proportion over the sum of actual and predicted residues
[26].

In this study, we adopted the IoUR measurement to calculate the
performance under the conditions IoUR ≧0.5 and IoUR = 1.0, which
indicated that at least one half and all of the residues were correctly
predicted, respectively. The details are presented in Table 5. Since

image of Fig.�2


Table 5
The prediction performance of GRE4Zn and a comparison with TEMSP and CHED.

IoUR ≧ 0.5 IoUR = 1.0

Sn (%) Pr (%) Sn (%) Pr (%)

GRE4Zn (4-res)a 97.68 98.93 95.56 96.58
GRE4Zn (3-res)a 88.28 86.26 77.34 75.57
GRE4Zn (Merged)a 97.19 91.88 91.35 85.78
GRE4Zn (Merged)b 97.01 87.84 89.55 81.08
TEMSPb 86.00 95.90 73.50 82.00
CHEDb 82.84 52.61 37.31 23.70

a Training dataset.
b Testing dataset.
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the 4-res and 3-res types of zinc-binding were predicted separately,
the performance was also calculated independently. For the 4-res
type, The Sn and Pr values of GRE4Znwere 97.68% and 98.93%, respec-
tively under IoUR ≧0.5, while the values were 95.56% and 96.58%
under IoUR = 1.0 (Table 5). For the 3-res type, GRE4Zn achieved a
performance of 88.28% (Sn) and 86.26% (Pr) when IoUR ≧0.5, while
the performance was 77.34% (Sn) and 75.57% (Pr) under IoUR = 1.0
(Table 5). For the 3-res zinc-binding, only three coordinating atoms
were from the three residues, while the fourth coordinating atom
was from a water molecule or other free ligand. Since the fourth coor-
dinating atom was not as restrained as the protein residues and
should therefore be simulated as a virtual coordinating atom during
prediction, it is more complicated to correctly predict the 3-res
zinc-binding sites. Such a characterization is consistent with the re-
sult that the prediction of the 4-res type was more accurate than
the 3-res type. When the prediction results from the 4-res and 3-res
types were merged, GRE4Zn yields a performance of 97.19% (Sn)
and 91.88% (Pr) under IoUR ≧0.5, while the Sn and Pr values are
91.35% and 85.78% under IoUR = 1.0, respectively (Table 5).

To further evaluate the performance of GRE4Zn, comparisons
were conducted with the testing datasets for TEMSP and CHED,
Fig. 3. An example (PDB ID: 2WJY) of zinc-binding prediction using GRE4Zn. (A) An overvie
4-res binding model for Cys123-His145-His155. (C) The predicted 4-res binding model for
which respectively are a predictor from our previous study and a pop-
ular structure- based predictor of metal binding sites [20,26]. The re-
sults are shown in Table 5. It was observed that GRE4Zn achieved a
comparable performance with TEMSP under IoUR ≧0.5 (Table 5). Al-
though the Pr of GRE4Zn was lower (87.84% vs. 95.90%), the Sn was
much better than TEMSP (97.01% vs. 86.00 %) (Table 5). Furthermore,
GRE4Zn was better than TEMSP under IoUR = 1.0, since the Pr of the
two were comparable (81.08% vs. 82.00%) but the Sn of GRE4Zn was
much better (89.55% vs. 73.50%) (Table 5). The comparison between
GRE4Zn and CHED indicated that GRE4Zn was much better. Under
IoUR ≧0.5, both the Pr and Sn of GRE4Zn were higher than CHED
(Pr: 95.90% vs. 52.61%; Sn: 86.00% vs. 82.84%). The comparison
under IoUR = 1.0 was consistent with this result (Pr: 82.00% vs.
23.70%; Sn: 73.50% vs. 37.31%). Taken together, it was demonstrated
that GRE4Zn achieved a superior performance in the prediction of
zinc-binding sites.

3.4. Large-scale analysis reveals the functional importance of zinc-binding

Since previous studies have suggested that 10% of the human prote-
ome is made up of potential zinc-binding proteins [4], it might be of
great value to have a systematic view based on large-scale computa-
tional analyses. With the superior GRE4Zn program, large-scale studies
of structurally characterized proteins in the PDB database were per-
formed. For example, UPF1, a human RNA-dependent ATPase and
5′-3′ RNA helicase, is critical for nonsense-mediated decay [36], the
structure of which was characterized in a previous study (PDB: 2WJY)
[36]. It was observed that there were three zinc ion binding sites for
UPF1, i.e. Cys123-Cys145-His155, Cys137-Ser140-His159 and Cys186-
Cys213 (Fig. 3A) [36]. It seems that the first two are 3-res zinc-
binding sites, while the thirdwas only partially characterized. However,
GRE4Zn suggested that the potential binding model for Cys123-
Cys145-His155 was Cys123-Cys126-Cys145-His155 (Fig. 3B). Further-
more, GRE4Zn suggested Cys165 was to be the fourth binding residue
w of the three zinc ions (red solid spheres) in the protein structure. (B) The predicted
Cys137-Ser140-His159. (D) The predicted 4-res binding model for Cys186-Cys213.
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Table 6
The most enriched biological processes in the potential zinc-binding proteins in the PDB database for E. coli, S. cerevisiae and H. sapiens, respectively (p-value b 10−7).

Description of GO term Zinc-binding Proteome E-ratioc p-value

Num.a Per.b Num. Per.

The most enriched biological processes for zinc-binding protein for Escherichia coli
Iron ion transport (GO:0006826) 18 4.95% 18 0.45% 10.93 1.36E−19
Carbohydrate metabolic process (GO:0005975) 49 13.46% 147 3.69% 3.64 5.24E−17
Metabolic process (GO:0008152) 76 20.88% 323 8.12% 2.57 3.90E−16
Cellular iron ion homeostasis (GO:0006879) 20 5.49% 32 0.80% 6.83 8.28E−14
Oxidation-reduction process (GO:0055114) 61 16.76% 258 6.48% 2.59 4.37E−13
L-Lyxose metabolic process (GO:0019324) 10 2.75% 10 0.25% 10.93 3.66E−11
L-Arabinose catabolic process to xylulose 5-phosphate (GO:0019569) 9 2.47% 9 0.23% 10.93 4.09E−10
Arabinose catabolic process (GO:0019568) 9 2.47% 9 0.23% 10.93 4.09E−10
TRNA 3′-end processing (GO:0042780) 11 3.02% 16 0.40% 7.52 9.31E−09
Lipopolysaccharide biosynthetic process (GO:0009103) 24 6.59% 74 1.86% 3.55 1.36E−08
Proteolysis (GO:0006508) 26 7.14% 88 2.21% 3.23 2.98E−08

The most enriched biological processes for zinc-binding protein for Saccharomyces cerevisiae
Transcription from RNA polymerase II promoter (GO:0006366) 220 55.70% 702 35.60% 1.56 4.40E−20
Transcription, DNA-dependent (GO:0006351) 223 56.46% 752 38.13% 1.48 1.01E−16
Glutamine biosynthetic process (GO:0006542) 20 5.06% 20 1.01% 4.99 7.30E−15
Maintenance of transcriptional fidelity during DNA-dependent transcription elongation from
RNA polymerase II promoter (GO:0001193)

40 10.13% 62 3.14% 3.22 9.84E−15

Transcription-coupled nucleotide-excision repair (GO:0006283) 40 10.13% 64 3.25% 3.12 4.82E−14
Nitrogen compound metabolic process (GO:0006807) 20 5.06% 22 1.12% 4.54 1.13E−12

The most enriched biological processes for zinc-binding protein for Homo sapiens
Regulation of ARF GTPase activity (GO:0032312) 16 1.74% 16 0.29% 6.10 2.46E−13
Apoptosis (GO:0006915) 73 7.96% 203 3.63% 2.19 4.41E−12
Protein deacetylation (GO:0006476) 14 1.53% 14 0.25% 6.10 9.40E−12
Central nervous system development (GO:0007417) 13 1.42% 14 0.25% 5.66 6.90E−10
Proteolysis (GO:0006508) 60 6.54% 170 3.04% 2.15 9.18E−10
Superoxide metabolic process (GO:0006801) 10 1.09% 10 0.18% 6.10 1.35E−08

a The number of proteins annotated.
b The proportion of proteins annotated.
c Enrichment ratio: the proportion in zinc-binding proteins divided by the one in the proteome.

Table 7
The statistical analyses of the enrichment in the zinc-binding proteins in cancer genes
and drug targets.

Zinc-binding Human PDB E-ratiod p-value

Totala Annotatedb Totalc Annotated

Cancer genes 1027 26 19651 189 2.63 6.13E−06
Drug targets 1027 50 19651 244 3.92 5.23E−17

a Total, the number of large-scale predicted zinc-binding proteins.
b Annotated, the number of predicted zinc-binding proteins annotated as cancer

genes/drug targets.
c Total, the total number of structurally characterized proteins.
d E-ratio, short for enrichment ratio, the proportion of annotated proteins in the pre-

dicted zinc-binding proteins divided by that of in all the human protein structures.
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for Cys137-Ser140-His159, even though serine was not considered in
GRE4Zn (Fig. 3C). In addition, Cys-183-Cys186-Cys209-Cys-213 was
suggested as the zinc-binding sites for Cys186-Cys213 (Fig. 3D). These
results are consistent with those in a recent comprehensive study by
Andreini et al. [37].

To further characterize the functional roles, organism-specific
statistical analyses were performed for the functional annotations of
potential zinc-binding proteins. For E. coli, the most enriched were
basic biological processes such as Iron ion transport/homeostasis
(GO:0006826, GO:0006879) and metabolic processes (GO:0005975,
GO:0008152) (Table 6). It was observed that the transcription-related
processes (GO:0006366, GO:0006351, GO:0001193, GO:0006283)
were over-represented (Table 6) in the potential zinc-binding proteins
of S. cerevisiae. The statistical results forH. sapiens suggested that certain
complex biological processes, including the regulation of ARF GTPase
activity (GO:0032312), apoptosis (GO:0006915) and central nervous
system development (GO:0007417) were enriched (Table 6). From
the statistical results of the GO terms, it was observed that the most
enriched biological processes of potential zinc-binding proteins were
different in different species. Furthermore, the results indicated that
zinc-binding proteins might have even more complex functions and
be involved in more complicated biological processes that enable
these proteins to play expanded roles in higher organisms.

Since zinc plays critical biological and physiological roles in organ-
isms, it is implicated in human health [1,38]. The functional analyses
of zinc-binding in cancer were conducted by means of a large-scale
analysis. The human cancer genes from the Cancer Gene Census of
the database Catalogue Of Somatic Mutations In Cancer (COSMIC)
[39] were retrieved and then analyzed by GRE4Zn. Utilizing the
hypergeometric distribution, it was observed zinc-binding proteins
were enriched in cancer genes (Table 7). From the large-scale predic-
tion, it was observed that various cancer genes, such as BRCA1, RB1,
CDH1 and DICER1, are zinc-binding proteins. For example, the breast
and ovarian cancer susceptibility gene BRCA1 encodes RING domain
which is stabilized by the zinc ion and exhibits ubiquitin ligase activ-
ity, while the disruption of zinc-binding by a cancer-predisposing
mutation abolished BRCA1 activity [40].

Furthermore, statistical analyses of the KEGG pathway were
performed (Table 8) using DAVID [41]. It was observed that zinc-
binding proteinswere enriched in “Pathways in cancer”, “Bladder cancer”
and “Small cell lung cancer”. In the KEGG “Pathways in cancer”,
approximately 30 proteins were predicted to be zinc-binding by
GRE4Zn (Table 8), such as the tumor suppressor p53, retinoblastoma-
associated protein and transforming growth factor beta-1. From the
results of this large-scale prediction, approximately 9 proteins in the
KEGG pathway of “Bladder cancer”, including tumor suppressor p53,
matrix metallopeptidase 1 and thrombospondin 1, were also suggested
to contain zinc-binding sites. Furthermore, approximately 12 proteins
involved in the KEGG pathway of “Small cell lung cancer”were predict-
ed to be zinc-binding, including tumor suppressor p53, TNF receptor-
associated factor 2 and X-linked inhibitor of apoptosis. Taken together,



Table 8
The statistical analyses of the over-represented KEGG pathway.

KEGG term Zinc-binding p-value Benjaminia

Num. Per.

Purine metabolism 21 4.7% 2.3E−05 3.4E−03
Complement and coagulation cascades 13 2.9% 6.6E−05 5.0E−03
Pathways in cancer 30 6.7% 5.4E−04 2.7E−02
Bladder cancer 9 2% 5.9E−04 2.2E−02
Small cell lung cancer 12 2.7% 1.6E−03 4.9E−02

a Benjamini, the Benjamini–Hochberg correction, p-value b 0.05.
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these analyses indicate that zinc-binding proteins are heavily involved
in cancer.

To further dissect the functional importance of zinc-binding,
large-scale analyses were performed with GRE4Zn on human drug
targets retrieved from the Potential Drug Target Database (PDTP)
[42]. The statistical analysis suggested that zinc-binding proteins
were enriched in the drug targets (Table 7). For example, previous
studies suggested that zinc is important for bone formation and min-
eralization [38], while bone morphogenetic protein 7 (BMP7) induces
cartilage and bone formation [43]. Recently, the TGF-beta family
member protein secreted from bone stromal cells BMP7 was found
to be critical in tumor dormancy and the recurrence of prostate can-
cer [44], and was proposed to be a potential drug target. The predic-
tion by GRE4Zn suggested there is a 4-res zinc-binding site of
Cys38-Cys71-Cys104-Cys138 in BMP7 (PDB ID: 1BMP) (Fig. 4A).
This prediction might provide helpful insight into the molecular mech-
anism by which BMP7 is involved in cancer signaling. The degradation
of extracellular matrix is critical for invasion and metastasis of cancer
cells [45,46]. As one of the serine proteinase systems involved in
Fig. 4. Prediction of zinc-binding sites in
extracellularmatrix degradation, urokinase-type plasminogen activator
(uPA) is a potential target for cancer therapy [45,46]. Interestingly, uPA
is inhibited by the zinc ion, and this inhibition suppresses the invasion
of human urological cancer cells [47]. With GRE4Zn, uPA was predicted
to contain the 3-res zinc-binding site Cys42–His57–Cys58 (PDB ID:
1C5W) (Fig. 4B). Since a disulfide bond in Cys42–Cys58 was identified
in the protein structure [48], which is critical for protein stability, it is
suggested that the zinc ion might inhibit uPA through the formation
of zinc-binding sites, which would influence the disulfide bond. Taken
together, it is suggested that the prediction of zinc-binding will prove
to be very helpful to achieving a better understanding of the molecular
mechanism of drug targets.
4. Discussion

The zinc ion is essential for living organisms and zinc-binding is crit-
ical for protein function [1–3,5]. The precise identification of
zinc-coordinating sites is a key step forward in understanding the bio-
logical roles and molecular mechanisms of zinc-binding proteins. Al-
though a great number of studies have contributed to this area, the
zinc metallome is still far from being understood [4]. Since experimen-
tally identifying zinc-binding sites is highly labor-intensive, it is of great
importance to develop computational approaches to provide the pre-
diction information that is needed for further investigation. Recently,
a series of computational studies on zinc-binding were carried out
[8–27], and a number of software packages have been developed
(Table 1). Although the predictors might be different in sequence-
based and structure-based approaches and the algorithms employed
are quite diverse, all of the predictors do need to train their model
with the dataset. Since training procedures might introduce the
BMP7 and uPA. (A) BMP7. (B) uPA.
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problem of over-fitting problem into the prediction effort, it is of great
importance to employ a training-independent approach.

In this study, we found that there were a number of differences be-
tween the 4-res and 3-res types of zinc-binding. Further analyses of the
4-res and 3-res types of zinc-binding suggested that the geometric
features of zinc-bindingwere sharply constrained. Based on these obser-
vations, we proposed the approach of geometric restriction presented in
this study, which is both simple and training-independent. The GRE4Zn
software was developed, and the performance was demonstrated to be
highly promising on the basis of both evaluation and comparison with
other studies. Furthermore, since othermetals such as ion, copper, calci-
um are able to bind with protein residues through coordination in a like
manner as zinc, it is evident that the coordination geometry is also
critical for the binding of these metals [49]. Thus, we suggest that this
GRE method may be applied for other metals. However, since the coor-
dination patterns differ for different metals [23,49], the details of the
geometrical relationships should be investigated thoroughly and the
method should be adapted to different metal bindings.

With the superior program GRE4Zn we have carried out large-
scale studies for structurally characterized proteins. The results
show that there is a dynamic variation in the functions of zinc-
binding across species. Further analyses suggest that zinc-binding
proteins are heavily implicated in disease and cancers, so the predic-
tion of zinc-binding sites is useful for obtaining insights into cancer
therapy and molecular mechanisms of drug targets. Taken together,
we anticipate that computational predictions and analysis, substanti-
ated by experimental investigation, will help advancing the under-
standing of the molecular functions and mechanisms of the binding
of zing as well as other metals.
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