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As the most important post-translational modification of
proteins, phosphorylation plays essential roles in all
aspects of biological processes. Besides experimental
approaches, computational prediction of phosphorylated
proteins with their kinase-specific phosphorylation sites
has also emerged as a popular strategy, for its low-cost,
fast-speed and convenience. In this work, we developed a
kinase-specific phosphorylation sites predictor of GPS 2.1
(Group-based Prediction System), with a novel but simple
approach of motif length selection (MLS). By this
approach, the robustness of the prediction system was
greatly improved. All algorithms in GPS old versions
were also reserved and integrated in GPS 2.1. The online
service and local packages of GPS 2.1 were implemented
in JAVA 1.5 (J2SE 5.0) and freely available for academic
researches at: http://gps.biocuckoo.org.
Keywords: group-based prediction system, motif length
selection/phosphorylation, post-translational modification

Introduction

Phosphorylation is the most important post-translational
modification of proteins, orchestrates most of biological
processes and regulates cellular dynamics and plasticity.
Usually, a member of protein kinase (PK) superfamily only
modifies limited substrates by mainly recognizing special
sequence/structural profiles around modified residues (S/T or
Y), to ensure the signaling fidelity (Kreegipuu et al., 1998;
Blom et al., 2004; Kobe et al., 2005; Hjerrild and
Gammeltoft, 2006; Ubersax and Ferrell, 2007; Miller and
Blom, 2009). In this regard, identification of phosphorylation
sites, especially kinase-specific phosphorylation sites, is
fundamental for understanding the molecular mechanisms
of phosphorylation and elucidating dynamic interactions
between PKs and their substrates. Besides the experimental

methods, various computational approaches have also been
established to generate highly potential candidates for further
experimental verification. We and other bioinformatists have
developed dozens of computational programs to predict
kinase-specific phosphorylation sites in proteins [reviewed in
(Kobe et al., 2005; Hjerrild and Gammeltoft, 2006; Miller
and Blom, 2009)]. The latest compendium of computational
resources for protein phosphorylation including phosphoryl-
ation databases and applicable tools could be available at:
http://gps.biocuckoo.org/links.php.

Previously, based on a major hypothesis of short similar
peptides bearing similar biological functions, we developed
a kinase-specific phosphorylation sites predictor of GPS
(Group-based Phosphorylation Scoring; Xue et al., 2005). We
defined a phosphorylation site peptide PSP(m, n) as a S/T or Y
residue flanked by m residues upstream and n residues down-
stream. In GPS 1.10, the PSP(3, 3) was arbitrarily decided
(Xue et al., 2005). Later, we improved the GPS algorithm and
developed GPS 2.0 (renamed as Group-based Prediction
System) software. In GPS 2.0, the PSP(7, 7) was arbitrarily
adopted (Xue et al., 2008). As the first stand alone software for
phosphorylation sites prediction, GPS 2.0 could predict kinase-
specific phosphorylation sites for 408 human PKs in hierarchy
(Xue et al., 2008). Recently, we revealed that different combi-
nations of modified peptides could generate different predic-
tion performances during studying of protein palmitoylation
(Ren et al., 2008). In this regard, an interesting question has
emerged: can we find the optimized combination of PSP(m, n)
with the optimal or near-optimal performance?

In this work, we carefully studied how different combi-
nations of PSP(m, n) influenced prediction performance and
robustness. The self-consistency validation and leave-one-out
(LOO) validation were thoroughly carried out for each PK
groups. We observed that the self-consistency results will be
always increased with longer PSP(m, n). However, when the
phosphorylated peptide was elongated, the LOO results will
first reach a peak value then decrease. In this regard, we
developed a novel but simple approach of motif length selec-
tion (MLS), which could automatically detect the optimal
length of PSP(m, n) with the highest LOO performance. By
comparing with our previous GPS 2.0 software (Xue et al.,
2008), the average sensitivity (Sn) of the LOO was signifi-
cantly increased by 15.62%, whereas the average Sn value
of the self-consistency was slightly reduced by 2.28%.
Importantly, it was proposed that the LOO validation might
overfit in small samples, whereas the n-fold cross-validation
(e.g. 10-fold) should do better (Shao, 1993; Dong et al.,
2006). Thus, the 4-, 6-, 8-, 10-fold cross-validations were
additionally performed. Interestingly, we observed that the
LOO results were quite similar with n-fold cross-validations
72 PK groups with �30 phosphorylation sites. Again, for the
72 PK groups, the Sn of the LOO was averagely enhanced
by 6.57%, while the Sn of the self-consistency was reduced
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by 1.10%. Taken together, the newly developed MLS
method could efficiently narrow down the difference
between the LOO validation and self-consistency validation
to improve the robustness of prediction system. The online
service and local packages of GPS 2.1 were implemented in
JAVA 1.5 (J2SE 5.0) and freely available at: http://gps.
biocuckoo.org.

Materials and methods

Preparation of the training and testing data sets
The training data set was taken from Phospho.ELM 7.0
(Diella et al., 2004, 2008), including 16 462 experimentally
verified phosphorylation sites. Among these sites, there were
3417 known kinase-specific phosphorylation sites reserved as
the training data set in GPS 2.1. As previously described
(Xue et al., 2008), we classified all human PKs with their
verified sites into a hierarchical structure with four levels,
including group, family, subfamily and single PK. The PK
groups with less than three sites were not included. As pre-
viously described (Xue et al., 2005, 2008; Ren et al., 2008),
we took all experimentally verified phosphorylation sites as
the positive data (þ), while all other S/T or Y residues in
the same proteins were regarded as the negative data (2).
The amino acid substitution matrix of BLOSUM62 was
chosen as the initial matrix. For comparison of GPS 2.0 (Xue
et al., 2008), we also prepared a testing data set from
Phospho.ELM 6.0 (Diella et al., 2004, 2008), including 3157
non-redundant phosphorylation sites with kinase information.

Evaluation of prediction performance and robustness
To evaluate the prediction performances and robustness of
GPS 2.1, the self-consistency validation, LOO validation and
n-fold cross-validation were calculated. The self-consistency
validation used the training positive data and negative data
directly to evaluate the prediction performance, and rep-
resented the computational power of the prediction system.
However, the robustness and stability of the software should
be evaluated by LOO validation and n-fold cross-validation.
In the LOO validation, which is also called as Jack–Knife
validation, each sites in the data set was picked out in turn as
an independent test sample, and all the remaining sites were
regarded as training data. This process was repeated until
each site was used as test data one time. In conventional
n-fold cross-validation, all the (þ) sites and (2) sites were
combined and then divided equally into n parts, keeping the
same distribution of (þ) and (2) sites in each part. Then
n 2 1 parts were merged into a training data set while the
remnant part was taken as a testing data set. This process
was repeated 20 times and the average performance of n-fold
cross-validation was used to estimate the performance. In
addition, a sequence-similarity-group-based n-fold cross-
validation was also adopted that the n parts are not assigned
randomly but based on groups of similar peptides. With the
k-means clustering approach (Herwig et al., 1999; Soukas
et al., 2000), we clustered the training data set into n groups
(n ¼ 4, 6, 8, 10 in this work). Given two PSP(m, n) peptides
A and B, the similarity was measured as:

sðA;BÞ ¼ Num: of conserved substitutions

Num: of all substitutions
:

A conserved substitution is a substitution with a Score(a,
b) . 0 in the BLOSUM62 matrix. The s(A, B) ranges from 0
to 1. Thus, the distance between them can be defined as:
D(A, B) ¼ 1/s(A, B). If s(A, B) ¼ 0, D(A, B) ¼1.

By exhaustively testing, PSP(15, 15) was used. First, n
phosphorylation sites from the positive data (þ) were ran-
domly picked out as the centroids. Second, the other positive
sites were pairwisely compared with the n centroids and clus-
tered into the groups with highest similarity values. Third,
the centroid of each cluster was updated with the highest
average similarity (HAS). The second and third steps were
iteratively repeated until the clusters were not changed any
longer. After the n clusters for positive sites were deter-
mined, we put each negative site into the cluster with the
HAS. Then, we used n 2 1 parts as training data set,
although the remaining part was regarded as testing data set.
Since the n groups were fixed after k-means clustering, the
performance calculation was only repeated n 2 1 times until
each part was used as test data one time, while average
values were computed.

In this work, the performances of self-consistency vali-
dation and LOO validation were calculated for all PK groups
(Supplementary data, Tables S2 and S3). The conventional
and sequence-similarity-group-based 4-, 6-, 8-, 10-fold cross-
validations were performed for 72 PK groups without ,30
sites. Owing to the page limitation, the performance of con-
ventional 4-fold cross-validation was shown (Supplementary
data, Table S2).

The four standard measurements of Sn, specificity (Sp),
accuracy (Ac) and Mathew’s correlation coefficient (MCC)
were calculated as below:

Sn¼ TP

TPþFN
; Sp¼ TN

TNþFP
;

Ac¼ TPþTN

TPþFPþTNþFN
; and

MCC¼ ðTP�TNÞ�ðFN�FPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞ�ðTNþFPÞ�ðTPþFPÞ�ðTNþFNÞ

p :

Implementation of the online service and local packages
The online service and local packages of GPS 2.1 were
implemented in JAVA 1.5 (J2SE 5.0). For the online service,
we tested GPS 2.1 on a variety of internet browsers, includ-
ing Internet Explorer 6.0, Netscape Browser 8.1.3 and
Firefox 2 under Windows XP Operating System (OS),
Mozilla Firefox 1.5 of Fedora Core 6 OS (Linux) and Safari
3.0 of Apple Mac OS X 10.4 (Tiger) and 10.5 (Leopard).
For Windows and Linux systems, a latest version of Java
Runtime Environment (JRE) package (JAVA 1.4.2 or later
versions) of Sun Microsystems should be pre-installed for
using the GPS 2.1 program. However, for Mac OS, the GPS
2.1 could be used directly without any additional packages.
For convenience, we also developed the local packages of
GPS 2.1. The stand alone softwares of GPS 2.1 supported
three major Operating Systems, including Windows, Linux
and Mac.
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Results

Different combinations of PSP(m, n) generate different
prediction performances and robustnesses
In this work, we carefully studied how different combinations
of PSP(m, n) influenced prediction performances. The train-
ing data set was taken from Phospho.ELM 7.0 (Diella et al.,
2004, 2008), including 3417 known kinase-specific
phosphorylation sites. To evaluate the performance and
robustness of the prediction system, the self-consistency
validation, LOO validation and n-fold cross-validation should
be performed. The self-consistency validation uses the train-
ing data set to test the prediction performance on currently
known data. However, the prediction system might be over-
trained and only perfect for the training data set, with low
prediction ability for new data. In this regard, the LOO vali-
dation should also be carried out. However, the LOO vali-
dation might not work well for discontinuous data sets (small
samples) to be prone to overfitting (Shao, 1993; Dong et al.,
2006). In this regard, the n-fold cross-validation should be
additionally performed (Shao, 1993; Dong et al., 2006). If
the self-consistency result is similar with the LOO validation
and n-fold cross-validation, the prediction system is robust
with less overfitting. Previously, we revealed that the results
of LOO were similar with the n-fold cross-validation for PK
groups with large number of phosphorylation sites (n � 30;
Xue et al., 2008). Thus, to test the performance and robust-
ness of different combination of PSP(m, n), we only calcu-
lated the self-consistency and the LOO results. We
exhaustively tested all combinations of PSP(m, n) (m ¼ 1,
. . ., 15; n ¼ 1, . . ., 15). The Sn values were calculated under
the Sp of 85, 90 and 95%. Then the average Sn was calcu-
lated as the final Sn value. From our previous experience, a
higher Sp value is more important than a higher Sn to avoid
too many false positive hits (Xue et al., 2005, 2008; Ren
et al., 2008). Thus, to improve the prediction performance
and robustness in the region of high Sp is more important

than other regions. Owing to the page limitation, here we
only presented four PK groups as instances (Number of
phosphosrylation sites � 30), including AGC/AKT, CMGC/
CDK/CDC2/CDC2, Other/AUR and TK/InsR/IGF1R
(Fig. 1). Interestingly, we observed that the self-consistency
results will be always increased with longer PSP(m, n).
However, when the phosphorylated peptide was elongated,
the LOO results will first reach a peak value then decrease.
For example, the Sn value of the self-consistency validation
of AGC/AKT could reach 100% when PSP(15, 9) was
chosen (the minimal length of the phosphorylated peptide
with the highest Sn value; Fig. 1). However, in the LOO vali-
dation, the maximal Sn was 89.89% with PSP(5, 1) (Fig. 1).
For AGC/AKT, if the PSP(15, 9) was chosen, its self-
consistency performance was quite different with its LOO
validation (100 versus 73.41%; Fig. 1). However, if PSP(5,
1) was selected, the self-consistency performance was very
similar with its LOO validation (90.64 versus 89.89%;
Fig. 1). Again, for CMGC/CDK/CDC2/CDC2, the Sn values
of the self-consistency and LOO for the PSP(15, 15) were
99.76 and 53.24%, although the Sn results of the self-
consistency and LOO for the optimal PSP(1, 2) were 79.86
and 78.18%, respectively (Fig. 1). Taken together, we pro-
posed that the optimal PSP(m, n) with the highest LOO vali-
dation could efficiently narrow down the difference between
the self-consistency and LOO validations to improve the
robustness of the prediction system. More detailed results
could be available in Supplementary data, Table S1.

A novel algorithm of MLS to improve the prediction
robustness
On the basis of above analyses, here we developed GPS 2.1
with a novel approach of MLS. The methods in GPS 2.0
were also reserved in GPS 2.1. In GPS 2.0, we developed a
novel approach of Matrix Mutation (MaM) to improve the
prediction performance (Xue et al., 2008). First, the amino

Fig. 1. The optimal PSP(m, n) with the highest LOO result (marked in white) narrows down the difference between the self-consistency and LOO results to
improve the robustness of the prediction system. Four PK groups, including AGC/AKT, CMGC/CDK/CDC2/CDC2, Other/AUR and TK/InsR/IGF1R, were
presented. We observed that (A) the self-consistency results will be always increased with longer PSP(m, n), while (B) the LOO results will first reach a peak
value then decrease.
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acids substitution matrix BLOSUM62 was selected as the
initial matrix. Then the Sn and Sp values of LOO validation
were calculated for each PK group. By exhaustively testing,
we fixed Sp at 90% to improve Sn values by randomly
mutating values of the BLOSUM62 matrix, until the Sn was
no longer increased. In GPS 2.1, we first used the MaM to
find the optimal matrix for each PK group. Then for each
combination of PSP(m, n) (m ¼ 1, . . ., 15; n ¼ 1, . . ., 15), we
calculated the average Sn values under Sp of 85, 90 and
95% with the LOO validation, respectively. And we obtained
the optimal PSP(m, n) with the highest LOO validation.
Owing to the training process is too time-consuming, such a
procedure was not iteratively repeated. To extensively evalu-
ate the prediction performance and robustness of GPS 2.1, the
self-consistency validation and LOO validation were
thoroughly carried out for all of PK groups, whereas 4-, 6-, 8-,
10-fold cross-validations were additionally calculated for 72
PK groups with �30 phosphorylation sites (Supplementary
data, Tables S2 and S3). Furthermore, the sequence-
similarity-group-based 4-, 6-, 8-, 10-fold cross-validations
were also calculated, while several examples were shown in
Supplementary data, Fig. S1. Both of conventional and
sequence-similarity-group-based n-fold cross-validation
results were similar with LOO validations.

Comparison of GPS 2.1 with our previous GPS 2.0
In our previous work, we extensively compared GPS 2.0
with other similar tools (Xue et al., 2008). The prediction
performance of GPS 2.0 is better or at least comparable with
previously established programs. Thus, in this work, we only
compared GPS 2.1 with GPS 2.0 to exhibit the superiority of
MLS method (Table 1). To avoid any bias, we used the same
data set (Phospho.ELM 6.0, including 3,161 kinase-specific
phosphorylation sites) to compare the prediction performance
and robustness between GPS 2.1 and GPS 2.0. For AGC/
AKT, the Sn values of LOO and self-consistency were 92.06

and 97.22% in GPS 2.0, respectively. In GPS 2.1, both of
the Sn values were refined as 92.46% (Table 1). And for
Other/AUR, the LOO and self-consistency Sn values were
53.25 and 90.91% in GPS 2.0, while the two Sn values were
61.90 and 64.50% after MLS (Table 1). The full comparison
results are available in Supplementary data, Table S4. In
GPS 2.0, the average Sn values of LOO and self-consistency
were calculated as 55.11 and 96.46%, while the two Sn
values were 70.73 and 94.18% in GPS 2.1 (Table 1). Thus,
with the MLS method, the average Sn of the LOO was sig-
nificantly increased by 15.62%, while the average Sn value
of the self-consistency was only slightly reduced by 2.28%
(Table 1). As mentioned above, the LOO validation might be
prone to overfitting for small samples, while the n-fold cross-
validation should be additionally performed (Shao, 1993;
Dong et al., 2006). However, the results of LOO and n-fold
cross-validation were quite similar for 72 PK groups with
large samples (n � 30; Supplementary data, Table S2). For
the 72 PK groups, the Sn of the LOO was averagely
enhanced by 6.57%, while the Sn of the self-consistency was
reduced by 1.10% (Supplementary data, Table S5). In this
regard, the MLS method narrowed down the differences
between the LOO and self-consistency to improve the
robustness of GPS 2.1.

Usage of GPS 2.1 software
The online service and local packages of GPS 2.1 were
implemented in JAVA 1.5 (J2SE 5.0). For prediction of
kianse-specific phosphorylation sites, one or multiple protein
sequences must be prepared in FASTA format. And at least
one PK group should be selected by left-clicking on the PK
list. Also, a threshold should be chosen. Then the prediction
results will appear soon by left-clicking on the ‘Submit’
button (Fig. 2). The online service and local packages of
GPS 2.1 support this manipulation. Furthermore, the local
packages have three additional tools for further analysis. If

Table I. Comparison of GPS 2.1 and GPS 2.0

Kinase family No selectiona Motif length selectionb

Upc Downd LOOe (%) Selff (%) Up Down LOO (%) Self (%)

AGC/AKT 7 7 92.06 97.22 5 1 92.46 92.46
AGC/DMPK/ROCK 7 7 52.08 97.92 9 1 64.58 87.50
AGC/PKC/Delta 7 7 44.44 100.00 3 2 65.56 84.44
AGC/PKG 7 7 73.96 100.00 4 2 82.29 89.58
AGC/RSK 7 7 76.79 100.00 8 2 82.14 95.24
CMGC/CDK/CDC2/CDC2 7 7 83.33 86.92 2 9 83.85 85.90
CMGC/MAPK/p38/MAPK14 7 7 65.22 96.38 2 1 71.74 72.46
STE/STE20 7 7 51.67 98.89 3 3 60.00 76.11
STE/STE20/PAKA 7 7 52.94 100.00 3 3 62.75 78.43
TKL/MLK/MLK/MAP3K11 7 7 44.44 100.00 1 1 66.67 88.89
Atypical/PIKK/FRAP 7 7 88.10 100.00 1 7 92.86 97.62
Other/AUR 7 7 53.25 90.91 4 1 61.90 64.50
TK/InsR/IGF1R 7 7 49.33 100.00 1 8 58.67 86.67
TK/Tec/BTK 7 7 70.37 98.15 5 2 83.33 85.19
Average 55.11 96.46 70.73 94.18

To avoid any bias, we retrained GPS 2.1 with the data set used in GPS 2.0, with 3161 kinase-specific phosphorylation sites (Phospho.ELM 6.0).
aNo Selection, the results in GPS 2.0.
bMotif length selection, the performances in GPS 2.1.
cUp, upstream peptides of phosphorylated residue.
dDown, downstream peptides of phosphorylated residue.
eLOO, leave-one-out validation.
fSelf, self-consistency result.
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users have too many proteins for prediction (e.g. .1500 pro-
teins), we recommend that users could install the local
packages of GPS 2.1 and use the ‘Batch Predictor’ program
in the Tools menu (Supplementary data, Fig. S2). Also, users
could use the ‘Performance’ program in the Tools menu
to view the self-consistency performances of GPS 2.1
(Supplementary data, Fig. S3). Previously, we designed a
software of DOG 1.0 (Domain Graph) to visualize the organ-
izations of protein domains, motifs and functional sites (Ren
et al., 2009). This program was also integrated in GPS 2.1 as
an auxiliary tool. Users could drag the mouse cursor in the
field of prediction form, right-click to open a menu, and then
left-click on the ‘Visualization’ button to visualize the pre-
diction results (Supplementary data, Fig. S4). Furthermore,
users could use the ‘Domain Graph’ tool in the Tools menu
to diagram protein domain structures, motifs and phosphoryl-
ation sites directly. Finally, a detailed manual could be either
directly downloaded from GPS 2.1 website or obtained in
local packages.

Discussion

In the post-genomic era, dissection of gene/protein functions,
regulatory roles and interactions has generated a new field of
functional genomics and emerged as a great challenge.
Identification of phosphorylation sites and elucidation of
synergetic associations between PKs with their substrates are
also important for understanding the genomic dynamics and
plasticity (Kreegipuu et al., 1998; Blom et al., 2004; Kobe
et al., 2005; Hjerrild and Gammeltoft, 2006; Ubersax and
Ferrell, 2007; Miller and Blom, 2009). Contrasting to labor-
intensive and time-consuming experimental approaches,
numerous computational methods have also been developed
as useful tools for their fast-speed, low-cost and convenience
(Kobe et al., 2005; Hjerrild and Gammeltoft, 2006; Miller

and Blom, 2009). Although a dozen of kinase-specific pre-
dictors were developed (http://gps.biocuckoo.org/links.php),
the mathematical models and algorithms still remained to be
improved.

To predict non-specific or kinase-specific phosphorylation
sites, a widely adopted hypothesis is that a PK could recog-
nize distinct sequence patterns/motifs of substrates by its
kinase domain for modification (Kreegipuu et al., 1998;
Blom et al., 2004; Kobe et al., 2005; Hjerrild and
Gammeltoft, 2006; Ubersax and Ferrell, 2007; Miller and
Blom, 2009). Thus, an informative phosphorylated motif for
modification should be decided before training. For example,
we defined a phosphorylation site peptide PSP(m, n) as a S/T
or Y residue flanked by m residues upstream and n residues
downstream. And similar or analogous terms were used in
other researches (Kobe et al., 2005; Hjerrild and
Gammeltoft, 2006; Miller and Blom, 2009). Previously, we
and other researchers casually and arbitrarily defined the
PSP(m, n) (Kobe et al., 2005; Xue et al., 2005; Hjerrild and
Gammeltoft, 2006; Xue et al., 2008; Miller and Blom, 2009).
However, in our previous studies, we observed that different
combinations of modified peptides could generate different
performance and robustness (Ren et al., 2008). Furthermore,
in this work, we revealed that the self-consistency result will
be always enhanced with longer PSP(m, n), although the
LOO value will first reach a peak value then decrease.

In this regard, here we developed a novel but simple
approach of MLS to detect optimal or near-optimal PSP(m,
n) with the highest LOO validation. Although the LOO vali-
dation might be prone to overfitting for small samples, our
results suggested that at least the performances of the LOO
validation and n-fold cross-validation were quite similar for
72 PK groups with large samples (n � 30). The n-fold cross-
validation was not chosen during training, because its result
fluctuates due to resampling randomicity. With this newly

Fig. 2. The screen snapshot of GPS 2.1 software. One or multiple protein sequences should be prepared in FASTA format as the input data.
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developed method, the current release of GPS 2.1 exhibit
much higher robustness to narrow down the difference
between the LOO and self-consistency to improve the robust-
ness. Taken together, we proposed that GPS 2.1 will be a
helpful tool for experimental researchers.

Supplementary data

Supplementary data are available at PEDS online.
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