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Identification of protein phosphorylation sites with their
cognate protein kinases (PKs) is a key step to delineate
molecular dynamics and plasticity underlying a variety of
cellular processes. Although nearly 10 kinase-specific
prediction programs have been developed, numerous PKs
have been casually classified into subgroups without a
standard rule. For large scale predictions, the false posi-
tive rate has also never been addressed. In this work, we
adopted a well established rule to classify PKs into a
hierarchical structure with four levels, including group,
family, subfamily, and single PK. In addition, we devel-
oped a simple approach to estimate the theoretically max-
imal false positive rates. The on-line service and local
packages of the GPS (Group-based Prediction System)
2.0 were implemented in Java with the modified version of
the Group-based Phosphorylation Scoring algorithm. As
the first stand alone software for predicting phosphoryl-
ation, GPS 2.0 can predict kinase-specific phosphoryla-
tion sites for 408 human PKs in hierarchy. A large scale
prediction of more than 13,000 mammalian phosphoryla-
tion sites by GPS 2.0 was exhibited with great perform-
ance and remarkable accuracy. Using Aurora-B as an
example, we also conducted a proteome-wide search and
provided systematic prediction of Aurora-B-specific sub-
strates including protein-protein interaction information.
Thus, the GPS 2.0 is a useful tool for predicting protein
phosphorylation sites and their cognate kinases and is
freely available on line. Molecular & Cellular Proteomics
7:1598–1608, 2008.

Post-translational modification of proteins provides revers-
ible means to regulate the function of a protein in space and
time. Recently computational studies of post-translational
modifications (PTMs)1 of proteins have attracted much atten-

tion. Various PTMs regulate the functions and dynamics of
proteins through specific modifications and are implicated in
almost all cellular processes. In contrast to the labor-intensive
and expensive experimental methods, in silico prediction of
PTM-specific substrates with their sites has emerged as a
popular alternative approach. To date, more than 32 compu-
tational prediction tools have been developed (1).

In the field of computational PTMs, protein phosphorylation
is the most studied example. To predict general phosphoryl-
ation sites, several tools have been developed, such as
DISPHOS (2), NetPhos (3), NetPhosYeast (4), and GANNPhos
(5). As the need for performing large scale predictions and
constructing reliable phosphorylation networks evolves, ro-
bust prediction of kinase-specific phosphorylation sites has
become necessary and challenging. For example, Neuberger
et al. (6) used pkaPS to predict potential protein kinase A
(PKA) sites in the human proteome directly. With Predikin,
Brinkworth et al. (7) predicted cognate PKs for 383 unanno-
tated phosphorylation sites of 216 peptide sequences in
yeast. Chang et al. (8) predicted 91 highly probable CDK
substrates in budding yeast using the position-specific scor-
ing matrix motif approach. Recently Linding et al. (9) devel-
oped NetworKIN and constructed a human phosphorylation
network, which has gained diversified interest not only for
human phosphorylation network prediction but also for gen-
eral implication in cell biology. To predict kinase-specific
phosphorylation sites, several on-line Web services have
been implemented using various algorithms, including our
previous work of GPS (10, 11) and PPSP (12), NetPhosK (13),
ScanSite (14), KinasePhos (15, 16), PredPhospho (17),
Predikin (18), PhoScan (19), pkaPS (6), etc.

Although �10 predictors are already available, two essential
issues have remained elusive. In the previous work, there was
no standard rule for protein kinase (PK) classification. We and
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ilarity from BLAST results (9–13, 15–17, 19). The thresholds of
PK classification varied in the previous publications, and the
final PK subgroups were also quite different. Another issue is
control of false positive rate (FPR) for large scale predictions.
Usually the bona fide phosphorylation sites are only a small
proportion of total Ser/Thr or Tyr residues present within a
protein sequence. Thus, many false positive hits in the total
prediction results could be generated even for a small FPR.

In this work, we refined the GPS software (Group-based
Prediction System, version 2.0) for predicting kinase-specific
phosphorylation sites in hierarchy. We adopted a PK classi-
fication established by Manning et al. (20) as the standard rule
to cluster the human PKs into a hierarchical structure with four
levels, including group, family, subfamily, and single PK. The
training data were taken from Phospho.ELM 6.0 (21), and the
modified version of the Group-based Phosphorylation Scor-
ing algorithm (10, 11) was used. Also we defined a simple rule
to calculate the theoretically maximal FPRs. Three cutoffs of
high, medium, and low thresholds were established with FPRs
of 2, 6, and 10% for serine/threonine kinases and 4, 9, and
15% for tyrosine kinases, respectively. The performance and
robustness of the prediction system were extensively evalu-
ated by self-consistency, leave-one-out validation, and 4-, 6-,
8-, and 10-fold cross-validations. Compared with other exist-
ing tools, GPS 2.0 carries a greater computational power with
superior performance. The on-line Web server version and
local packages of GPS 2.0 were implemented in Java and can
predict kinase-specific phosphorylation sites for 408 PKs in
human. Moreover we used GPS 2.0 to conduct a large scale
prediction of more than 13,000 mammalian phosphorylation
sites in which GPS 2.0 exhibited remarkable performance.
Finally we demonstrated the accuracy of GPS 2.0 prediction
based on a proteome-wide search for Aurora-B cognate sub-
strates. Taken together, GPS 2.0 offers greater precision and
computing power on predicting protein phosphorylation and
enzyme-substrate relationship.

EXPERIMENTAL PROCEDURES

Protein Kinase Classification for the Training Data Set—The training
data set was derived from Phospho.ELM 6.0 (21), including 13,615
experimentally verified phosphorylation sites. First the redundant
records were removed leaving 13,577 non-redundant entries. Then
3,161 non-redundant sites with respective kinase information were
used for training. Because most of the verified sites were mammalian
(13,254 of 13,579, �97.6%), we adopted a well established rule for
human PK classification (20, 22) to cluster various PKs with their
verified sites into a hierarchical structure with four levels, including
group, family, subfamily, and single PK (20, 22) (see supplemental
Table S1). The PK groups with less than three sites were singled out
from this study.

The training data could be reused several times and included in
different PK clusters (Fig. 1). For example, in the AGC group, the
experimental sites with PK information of PKB_group, PKB�, PKA�,
PKA_group, and other AGC kinases were used as the training data. In
the AGC/AKT family, the verified sites with PK information of PKB_
group and PKB� were used. Again for AGC/AKT/AKT2, the verified sites
only with PK information of PKB� were used. Also for the AGC/PKA

family, only the verified sites with PK information of PKA� and PKA_
group were used. Currently there are only two PKA� sites identified.
Thus, the PK cluster of AGC/PKA/PKA� was not used in GPS 2.0.

It has been reported that there are 518 human PKs identified (20).
After careful curation, we found that PKG1 had two paralogs in human
rather than one gene. In this regard, the total human kinome contains
519 unique PKs. As previously described, we used the experimentally
verified phosphorylation sites as the positive data (�), whereas all
other residues (Ser/Thr or Tyr) in the same substrates were regarded
as the negative data (�) (10–12, 15–17).

Evaluation of Prediction Performance and Robustness of GPS
2.0—The self-consistency validation was performed to evaluate the
prediction performance. The jackknife validation and 4-, 6-, 8-, and
10-fold cross-validation were extensively performed to evaluate the
robustness and stability of the prediction system. Four standard
measurements of accuracy (Ac), sensitivity (Sn), specificity (Sp), and
the Mathew correlation coefficient (MCC) were defined as follows.

Sn �
TP

TP � FN
(Eq. 1)

Sp �
TN

TN � FP
(Eq. 2)

Ac �
TP � TN

TP � FP � TN � FN
(Eq. 3)

MCC �
(TP � TN) � (FN � FP)

�(TP � FN) � (TN � FP) � (TP � FP) � (TN � FN)

(Eq. 4)

The results of n-fold cross-validation were very similar to those
with the leave-one-out validation (see supplemental Fig. S1). To
simplify the analysis, we only adopted performances of the self-
consistency and leave-one-out validation for further analysis. The
receiver operating characteristic curves were drawn for 70 PK
groups with �30 sites with the x axis of 1 � Specificity and the y
axis of Sensitivity (see supplemental Fig. S2).

The Modified Version of the Group-based Phosphorylation Scoring
Method Algorithm—To predict kinase-specific phosphorylation sites,
we used our previous Group-based Phosphorylation Scoring method
with improvement (10, 11). First we defined a phosphorylation site
peptide PSP(m, n) as a serine (Ser), threonine (Thr), or tyrosine (Tyr)
amino acid flanked by m residues upstream and n residues down-
stream. The chief hypothesis of the algorithm is that if two short
peptides share high sequence homology they may also bear similar
three-dimensional structures and biochemical properties. Then we
used the amino acid substitution matrix BLOSUM62 to calculate the
similarity between two PSP(7, 7) peptides.

As described previously (10, 11), for two amino acids a and b, let
the substitution score between them in BLOSUM62 be Score(a, b).

FIG. 1. The training data could be reused several times and
included in different PK clusters based on their cognate PKs
information.
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The similarity between two PSP(7, 7) peptides (15 amino acids) A and
B is defined as follows.

S�A, B� � �
1 � i � 15

Score�A�i	, B�i	� (Eq. 5)

If S(A, B) 
 0, we simply redefine S(A, B) � 0.
Given a putative PSP(7, 7) peptide, it will be compared with all

known sites pairwisely to calculate the substitution scores separately.
The average value of the substitution scores is computed as the final
prediction score of the given site. The basic idea of the Group-based
Phosphorylation Scoring algorithm is also diagrammed (see Fig. 2).
The gray dots represent the positive sites. The nearer distances
indicate higher similarity scores between two sites. Given a putative
PSP(7, 7) peptide, we can calculate its score. Then we can judge
whether the given site is a potentially real phosphorylation site under
different thresholds.

In previous versions (GPS 1.0 and 1.10), we hypothesized that the
bona fide pattern for PK recognition and modification might be com-
promised by heterogeneity of multiple structural determinants with
different features. Then all known phosphorylation sites are automat-
ically partitioned into several clusters with the Markov cluster algo-
rithm to improve the prediction performance (10, 11). However, only
�11% of the PK groups (eight of 71) could be divided into more than
one cluster with improved performances. Thus, the clustering method
was not used in GPS 2.0.

To improve the robustness of the prediction system globally with-
out influencing the prediction performance significantly, we devel-
oped a simple method of matrix mutation (Fig. 3). First the amino acid

substitution matrix BLOSUM62 was chosen as the initial matrix. The
performance (Sn and Sp) of leave-one-out validation for each PK
group was calculated. Then we fixed Sp at 90% to improve Sn by
matrix mutation. The process of matrix mutation is halted when the Sn
value is no longer increased. Although matrix mutation in other types
was also valid, the method we used in this study could improve the
leave-one-out validation significantly, whereas the self-consistency
was only influenced moderately. Thus, such a procedure made the
GPS 2.0 more robust and stable.

Control of FPR—To estimate the FPR, we tried to construct a
near-negative data set by several approaches. The first method was
to generate PSP(7, 7) peptides randomly. However, the abundances
of the 20 amino acids are not equal in eukaryotes. Thus, the method
was not used because it could not reflect the real distributions of
PSP(7, 7) peptides in proteomes. Also the negative sites could also be
randomly retrieved from eukaryotic proteomes. However, this method
needs a large sequence file to retrieve PSP(7, 7) peptides, and this
would slow the speed of computation. In this study, we chose a
simple and fast method to construct the near-negative data set. First we
calculated the distributions of amino acid composition in six organisms,
including Saccharomyces cerevisiae, Schizosaccharomyces pombe,
Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and
Homo sapiens. Then we randomly generated PSP(7, 7) peptides based
on the real frequencies of the 20 amino acids. And FPR values based on
the latter two methods were very similar. By this method, we randomly
generated 10,000 PSP(7, 7) peptides and used GPS 2.0 to estimate the
theoretically maximal FPR. The process was repeated 20 times, and the
mean value was calculated as the final FPR.

Threshold Setting—Threshold setting was also a difficult problem.
In general, we and others have chosen different thresholds for every
PK group (6, 10–19). Here we propose a uniform rule to choose cutoff
values based on calculated FPRs. For serine/threonine kinases, the
high, medium, and low thresholds were established with FPRs of 2, 6,
and 10%. For tyrosine kinases, the high, medium, and low thresholds
were selected with FPRs of 4, 9, and 15%. The high threshold was
validated by a large scale prediction of mammalian phosphorylation
sites with satisfying performance. The medium threshold often re-
duced the stringency to be useful in small scale experiments. Also the
low threshold reduced the Sp to improve Sn considerably; this is very
useful in extensive experimental identification of all potential phos-
phorylation sites in substrates.

RESULTS

Construction of the GPS 2.0 Software—The process of
construction of GPS 2.0 software is summarized below (Fig.
4). An extensively adopted hypothesis for predicting kinase-
specific phosphorylation sites is that PKs in a same group/
subfamily will recognize similar sequence patterns of sub-
strates for modification (9–19). In previous work, numerous
PKs were classified into several groups simply based on
sequence comparison by BLAST (9–19). Because the ki-
nomes of several eukaryotic organisms have been compre-
hensively identified, phylogenetically analyzed, and classi-
fied into a hierarchical structure, including group, family,
subfamily, and single PK (20), and because most of the
phosphorylation sites in the public database have been
experimentally verified in mammals (13,254 of 13,579,
�97.6%), we directly used the classification of human ki-
nome as the standard rule for GPS 2.0 (20). To date, the
specific substrates with their relationships to respective
cognate kinases have still not been identified. To predict

FIG. 2. The basic idea of the Group-based Phosphorylation
Scoring algorithm. The gray dots represent the positive sites. The
nearer distances indicate higher similarity scores between two sites.
Given a putative PSP(7, 7) peptide, we can calculate its score. Then
we can judge whether the given site is a potentially real phosphoryl-
ation site under different thresholds.

FIG. 3. A simple method of matrix mutation.
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potential phosphorylation sites for these kinases, a hypoth-
esis should be adopted that the kinases in the same group,
family, or subfamily could recognize similar patterns/motifs
in substrates for modification. For example, both the CDK
and MAPK families belong to the CMGC group (see supple-
mental Table S1) and could recognize a general motif of
(pS/pT)P (where pS is phosphoserine and pT is phospho-

threonine) for modification (23). Besides identification of
substrates with relationships to well known PKs, GPS 2.0
could also predict substrate phosphorylation site informa-
tion for many novel or less characterized PKs. Also the
prediction capacity of GPS 2.0 is greater compared with the
existing programs chosen. For example, GPS 1.0 and 1.10
(10, 11) could predict specific sites for Aurora-A and Auro-
ra-B, respectively, whereas KinasePhos 2.0 could predict
sites for Aurora group (AUR family; see supplemental Table
S1). And GPS 2.0 could be used for AUR family, Aurora-A,
and Aurora-B, respectively. Because of the data limitation,
certain kinases contain very few known phosphorylation
sites. For example, the numbers of GRK-1, GRK-2, GRK-3,
GRK-4, and GRK-5 sites were 8, 28, 4, 4, and 11, respec-
tively (see supplemental Table S3), whereas the number of
GRK family sites was 84. When the data set is too small, the
prediction robustness will be low. However, GPS 2.0 pro-
vided a hierarchical classification, and the experimentalist
could choose the proper predictor for computing. The train-
ing data set was taken from Phospho.ELM 6.0 (21), contain-
ing 3,161 verified phosphorylation sites with respective ki-
nase information. These sites were then hierarchically
clustered into groups, families, subfamilies, and kinases.
The Java programming language was used for the imple-
mentation of the on-line service and stand alone software of
GPS 2.0 (Fig. 5). The current version contained 144 serine/
threonine and 69 tyrosine PK clusters and could predict
kinase-specific phosphorylation sites for 408 human PKs in
hierarchy (see supplemental Tables S1, S2, and S3).

FIG. 4. The process of construction of GPS 2.0 software. The
training data were taken from the Phospho.ELM 6.0 database. All
sites with kinase information were retained. Then these verified sites
with their kinases were separated into a hierarchical structure with
four levels, including group, family, subfamily, and single PK. The
modified version of Group-based Phosphorylation Scoring algorithm
was used. The matrix mutation was used to improve the robustness
of the prediction system. Then we set the high, medium, and low
thresholds based on the calculated FPR for each PK cluster. Finally
GPS 2.0 was implemented in Java as the first stand alone software for
computational phosphorylation.

FIG. 5. The screen snapshot of GPS
2.0 software. As an example, the pro-
tein sequence of rat Spinophilin was
adopted. And the prediction results of
PKA-specific sites with medium thresh-
old are shown. DMPK, myotonic dystro-
phy protein kinase; PKC, protein kinase
C; PKG, protein kinase G; RSK, riboso-
mal S6 kinase; SGK, serum- and glu-
cocorticoid-regulated protein kinase;
TKL, tyrosine kinase-like.
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Matrix Mutation to Improve the Robustness of the Predic-
tion System—In our previous work, the BLOSUM62 matrix
was used to score the similarity between known phospho-
rylation sites and a given site (10–12). However, the per-
formance of BLOSUM62 in comparison with other matrices
was not evaluated. Here we used PKA as an example to
depict the matrix selection. We tested the prediction per-
formances of PKA for �60 matrices (BLOSUM30–100 and
PAM10–500, etc.). Both self-consistency and leave-one-out
validation were calculated for comparison. Theoretically the
performances of the self-consistency and jackknife valida-
tion of a perfect predictor should be very similar. Perform-
ance comparisons for eight typical matrices are shown (Fig.
6). Although the self-consistency performances of BLO-
SUM90, PAM10, and PAM90 were very high, their leave-
one-out validations were quite low. The leave-one-out val-
idations of BLOSUM30, BLOSUM45, PAM250, and PAM500
were more similar to their self-consistency performances.
However, both performances were lower than that of BLO-
SUM62. To balance the prediction performance and robust-
ness of the prediction system, the BLOSUM62 matrix was
adopted in GPS 2.0.

Because different matrices will generate various perfor-
mances, an interesting question is whether we can find an
optimal or near-optimal matrix for each PK groups to improve
the system stability without influencing the prediction per-
formance significantly. To address this question, we devel-
oped a simple method to automatically mutate BLOSUM62

into a near-optimal matrix for each PK groups. First the per-
formance (Sn and Sp) of leave-one-out validation for each PK
group was calculated. Then we fixed Sp at 90% to improve Sn
by matrix mutation. Using this approach, the leave-one-out
validations of most of the PK groups were improved signifi-
cantly, whereas the self-consistency performances were only
influenced moderately (Fig. 7). For example, with an Sp of
90%, the leave-one-out validation (LOO) Sn values of AGC/
PKA, AGC/AKT, CaMK/CaMKII, and CMGC/CDK were in-
creased from 80.7, 85.7, 67.4, and 81.8% to 89.6, 92.9, 81.4,
and 88.7%, respectively, whereas their self-consistency Sn
values were altered from 87.5, 96.4, 97.7, and 88.5% to 91.1,
98.8, 96.5, and 92.1%, respectively (Table I).

Comparisons of GPS 2.0 with Other Existing Tools—Here
we compared the prediction performances of GPS 2.0 with
several other existing tools, including ScanSite (14), Kinase-
Phos (1.0 and 2.0) (15, 16), NetPhosK (13), and pkaPS (6).
Because the leave-one-out validations for these programs
were unavailable, we focused on the comparison of the self-
consistency performances.

We chose four well known PK groups for comparison,
including AGC/PKA, atypical/PIKK/ATM, CMGC/CDK/
CDC2/CDC2, and TK/Src/Src. Both the positive and nega-
tive data sets we tested for GPS 2.0 were submitted on
these on-line services directly. And the measurements of Sn
and Sp were calculated for each program, respectively.
Then we fixed the Sp to be nearly equal to that in other tools
and compared the Sn values (Table II). For PKA site predic-

FIG. 6. Comparison of various scor-
ing matrices. Self, self-consistency. The
BLOSUM62 matrix was adopted to bal-
ance the prediction performance and ro-
bustness of GPS 2.0.
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tion, only ScanSite with a high threshold (Sp of 99.91%) was
better than GPS 2.0 with Sn of 16.91 versus 8.61%. However,
when the medium or low threshold was chosen, GPS 2.0 was
better than ScanSite. As for CDC2, ScanSite under medium
and high thresholds, KinasePhos 1.0 with 100% Sp, and
KinasePhos 2.0 were better, whereas the performance of GPS
2.0 was comparable with the three tools. However, for both

ATM and Src, GPS 2.0 was the best predictor in all circum-
stances. Taken together, GPS 2.0 is better or at least com-
parable with previously established programs.

A Large Scale Prediction of Kinase-specific Phosphoryla-
tion Sites in Mammals—Estimation and control of false posi-
tive prediction is the key point in large scale predictions of
kinase-specific phosphorylation sites. The FPR is the propor-
tion of negative sites that are erroneously predicted as posi-
tive hits. From our analysis, the real phosphorylation sites
were only a very small part of all Ser/Thr residues in proteins
(see supplemental Tables S2 and S3). For 144 serine/threo-
nine PK groups, the ratios of positive sites versus the negative
sites range from 1:13.2 (other/PEK: 16 positive sites and 211
negative sites) to 1:141.2 (CaMK/CaMKI/CaMKIV: nine posi-
tive sites with 1,271 negative sites) with the average being
1:49. And for 69 tyrosine PK groups, the ratios of positive sites
versus the negative sites range from 1:1.6 (TK/Trk/TRKA: five
positive sites with eight negative sites) to 1:28.2 (TK/Csk: five
positive sites and 141 negative sites) with the average being
1:9.7. Thus, even a very small FPR could generate too many
false positive hits.

Given a data set containing all non-phosphorylation sites,
the real FPR could be easily computed. However, precise
calculation of FPR is unavailable because of the lack of a
“gold standard” negative data set. Here we randomly gener-
ated 10,000 PSP(7, 7) peptides to construct a near-negative
data set based on the real frequencies of the 20 amino acids
in eukaryotic proteomes. Although a few sites were predicted
to be real hits, the proportion would be very small. The proc-
ess was repeated 20 times, and the average FPR was calcu-

FIG. 7. Prediction performances be-
fore and after matrix mutations. For
instance, we randomly chose 12 PK
clusters to compare the performances.
Usually the leave-one-out validations will
be improved significantly. But the self-
consistencies were only enhanced mod-
erately. Thus, the process of matrix mu-
tation improved both performance and
robustness of GPS 2.0. MM, matrix mu-
tation; Self, self-consistency; PKC, pro-
tein kinase C; RSK, ribosomal S6
kinase; MAPKAPK, MAPK-activated
protein kinase.

TABLE I
Matrix mutation

The procedure of matrix mutation improved the leave-one-out val-
idation significantly, whereas the self-consistency performance was
only moderately influenced. Here we fixed Sp at 90% to improve Sn
by matrix mutation. PKC, protein kinase C; MAPKAPK, MAPK-acti-
vated protein kinase.

PK cluster
Before MMa After MMb

Selfc LOOd Self LOO

% %

AGC/PKA 87.5 82.2 91.1 89.6
AGC/PKC/� 90.0 49.2 78.3 68.3
Atypical/PIKK 90.1 62.6 96.7 86.8
CaMK/CaMKII/CaMKII-� 100.0 69.0 100.0 93.1
AGC/AKT 96.4 86.9 98.8 92.9
AGC/GRK 90.5 52.3 98.8 61.9
AGC/PKC 72.7 64.1 79.2 75.0
AGC/RSK 98.2 76.8 100.0 83.9
CaMK/CaMKII 97.7 67.4 96.5 81.4
CaMK/MAPKAPK 100.0 43.8 100.0 62.5
CMGC/CDK 88.5 83.8 92.1 88.1
Other/CK2 77.6 74.3 80.2 78.8

a Before matrix mutation.
b After matrix mutation.
c Self, self-consistency Sn.
d LOO, the Sn of leave-one-out validation.

Prediction of Phosphorylation Sites

Molecular & Cellular Proteomics 7.9 1603

 by on N
ovem

ber 20, 2008 
w

w
w

.m
cponline.org

D
ow

nloaded from
 

http://www.mcponline.org/cgi/content/full/M700574-MCP200/DC1
http://www.mcponline.org/cgi/content/full/M700574-MCP200/DC1
http://www.mcponline.org


lated by GPS 2.0 as the theoretically maximal FPR. Then for
large scale predictions, we defined the precision (Pr) as
follows.

Pr �
M � �N � FPR�

M
(Eq. 6)

Here N is the number of sites (Ser/Thr or Tyr) for prediction;
M is the number of predicted sites by GPS 2.0. Because the
FPR is the theoretically maximal false positive rate, the Pr is
the minimal proportion of correct predictions.

For any given kinase, the total Ser/Thr or Tyr residues in a
proteome could be divided into three groups, including sites
phosphorylated by the kinase, sites phosphorylated by
other kinases, and non-phosphorylation sites. For the ki-
nase, sites of the latter two groups would be regarded as
“negative hits” for prediction. Because most sites in a pro-
teome are non-phosphorylation sites, the number of nega-
tive sites for the kinase is too large. Thus, it would not make
sense to carry out a large scale prediction for a proteome
directly. Currently there are many small scale and large
scale experiments to identify phosphorylation sites. And
most of these sites are integrated in the Phospho.ELM data-
base (21). From Phospho.ELM 6.0, there were 13,254 mam-
malian sites, including 9,717 Ser(P), 1,818 Thr(P), and 1,719
Tyr(P) sites (Table III). These sites were experimentally iden-
tified, but the kinase information of more than 10,000 sites still
remains to be annotated. Most importantly, in the data set, the
non-phosphorylation sites were excluded. And the number of
potentially negative hits for a given kinase was greatly re-

duced. In this regard, a properly defined FPR will be useful to
evaluate the prediction accuracy.

In this work, we performed a large scale prediction of ki-
nase-specific phosphorylation sites in mammals to compare
with the phosphorylation sites in Phospho.ELM 6.0. The high
threshold of GPS 2.0 was chosen with an FPR of 2% for
serine/threonine kinases and 4% for tyrosine kinases. The
predictor for budding yeast IPL1 was not used. We divided
the data set into three groups, the known substrates of a PK
for prediction (Known sub.), the known substrates of other

TABLE II
Comparison of GPS 2.0 with previous prediction tools, including ScanSite, KinasePhos 1.0 and 2.0, NetPhosK, and pkaPS

Both the positive and negative data we tested for GPS 2.0 were submitted on these Web servers. And we fixed Sp to be similar with that
used in previous tools to compare the Sn values. The performances with better values than those from GPS 2.0 are bold.

Predictors and
threshold

PKA ATM CDC2 Src

Sn Sp Sn Sp Sn Sp Sn Sp

% % % %

ScanSite
Low 69.14 95.02 54.55 93.67 73.08 95.13 28.68 95.28
Medium 42.43 99.17 27.27 98.57 29.23 99.26 11.76 99.37
High 16.91 99.91 18.18 99.70 8.46 99.84 3.68 99.94

KinasePhos 1.0
90% 85.16 90.64 89.09 83.86 72.31 86.37 47.06 89.93
95% 80.12 94.50 87.27 89.76 63.08 92.69 38.24 93.91
100% 58.46 98.42 81.82 96.04 48.46 97.99 25.00 97.84

KinasePhos 2.0 55.19 89.20 89.09 38.12 13.08 99.72 86.86 55.97
NetPhosK 77.74 91.18 85.45 97.60 16.92 87.79 33.09 95.39
pkaPS 89.61 90.81
GPS 2.0 83.09 95.04 100.00 94.03 77.96 95.16 54.02 95.34

49.26 99.17 72.73 98.62 23.12 99.26 17.24 99.43
8.61 99.91 32.73 99.70 7.53 99.84 3.83 99.93

89.91 90.75 —a — 93.01 86.41 66.28 89.96
84.57 94.49 — — 89.78 92.71 57.09 94.05
64.39 98.43 98.18 96.04 46.77 97.99 37.93 97.85
91.69 89.25 — — 9.14 99.72 91.19 56.03
89.61 91.26 87.27 97.61 91.94 87.84 52.87 95.44
89.91 90.91

a Not compared because both Sn and Sp of GPS 2.0 were better.

TABLE III
Data analyses of a large scale prediction for kinase-specific sites in

mammalian proteomes

Among 13,254 sites identified by Phospho.ELM 6.0 in mammals,
GPS 2.0 can predict 12,219 sites with at least one cognate kinase.
Pro., proteins.

Phospho.ELM 6.0 Mammalian Predicted Coverage

%

Total
Sites 13,254 12,219 92.19
Pro. 4,291 4,071 94.87

Ser(P)
Sites 9,717 9,195 94.63
Pro. 3,444 3,325 96.54

Thr(P)
Sites 1,818 1,551 85.31
Pro. 1,200 1,048 87.33

Tyr(P)
Sites 1,719 1,473 85.69
Pro. 885 768 86.78
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kinases (Other’s sub.), and the sites without PK information
(Unknown sub.) (supplemental Table S4). For example, there
were 306 sites experimentally identified as PKA sites in mam-
mals. And 1,993 sites were verified as substrates of other PKs
with 9,236 unannotated sites. For the first group (Known sub.),
the Sn was calculated to depict the proportion of which we
can correctly predict for the existing sites. And for the latter
two groups, the Pr was calculated to estimate the minimal
accuracy for large scale predictions, respectively.

For 143 serine/threonine and 69 tyrosine PK groups, the Sn
values for known substrates and Pr values for unknown data
were calculated, respectively. Most of the prediction results
were obtained with satisfying performances (see supplemen-
tal Fig. S2). For example, GPS 2.0 could predict 200 of 306
known PKA sites as positive hits with an Sn of 65.36%. And
for 1,993 sites phosphorylated by other PKs, GPS 2.0 could
predict 220 of them as positive hits with a Pr of 81.88%,
meaning that at least 81.88% of the 220 predicted sites might
be positive sites. Again for 9,236 unannotated sites, GPS 2.0
could predict 959 of them as positive sites with a Pr of
80.74%. However, if there were very few real positive sites in
the entire data set, the occurrence of real positive sites should
be even lower than randomly generated data, and the Pr value
could be very small and even lower than 0, which indicates the
under-representation of substrates of the subject kinase in a
given data set. In our analysis, there were 53 PK groups (25%
of 212 PK groups) with low performances. In total, there were
12,219 sites predicted with at least one PK with a total cov-
erage of 92.19% (Table III).

Prediction of Potential Aurora-B Substrates from Its Interact-
ing Proteins—As described previously, protein kinase Aurora-B
is a component of the Aurora/Ipl1 family and plays important
roles in chromosome segregation (24–26) and progression of
cytokinesis (27). During mitosis, Aurora-B localizes on the kin-
etochore and forms a protein complex with Survivin, INCENP
(inner centromere protein), and Borealin in metaphase (26). Then
it moves to the midbody in cytokinesis (27). Proteins phospho-
rylated by Aurora-B regulate their functions and dynamics dur-
ing cell division. In this regard, identification of Aurora-B sub-
strates with their sites will be important for understanding the
molecular mechanisms of cell division.

In this study, we performed a comprehensive prediction
for Aurora-B substrates with respective phosphorylation
sites in human. As discussed previously, a short peptide
flanking a site is not sufficient for providing full specificity for
a PK modification in vivo (28, 29). Numerous mechanisms
have also been proposed to account for the specificity for
PK recognition, such as subcellular co-localization of PKs
with their substrates, co-complex, or interacting directly
(28–30). Thus, in vivo a PK should at least “kiss” its sub-
strates and then say farewell by direct or indirect interac-
tions. Here we adopted this “kiss-then-farewell” model and
predicted Aurora-B substrates with their sites from its inter-
acting proteins.

Both the experimental and predicted protein-protein inter-
action databases were used. The human experimental pro-
tein-protein interaction (PPI) data were derived from the Da-
tabase of Interacting Proteins (DIP) (31), BioGrid (32), the
Molecular Interaction Database (MINT) (33), the Biomolecular
Interaction Network Database (BIND) (34), and the Human
Protein Reference Database (HPRD) (35) with 1,397, 38,217,
8,127, 43,412, and 33,710 entries. These data sets were
integrated into a non-redundant set with a total number of
51,529 records. For predicted PPI data, we simply used the
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING database) with 690,143 precalculated PPI entries
(36). Both experimentally verified and predicted PPI data
were mapped to the UniProt database by BLAST for nor-
malization of protein accession numbers. In total in Phospho.
ELM 6.0, there were 140 human proteins containing 605
Ser(P)/Thr(P) sites identified as Aurora-B-interacting proteins.
The high threshold of GPS 2.0 was used with an FPR of 2%.
Then 48 sites from 32 proteins were predicted as positive hits
(Table IV). The total Pr of the prediction was calculated as
(48 � (605 � 2%))/48 � 74.79%.

Our analysis had precisely predicted 21 of 26 (Sn of �81%)
experimentally verified Aurora-B sites in human (Table IV). In
addition, several novel substrates with potential sites were
identified in silico. For example, although human TD-60 is
co-localized with Survivin on the kinetochore (37), its phos-
phorylation by Aurora-B was never reported. We predicted
that human TD-60 could be phosphorylated by Aurora-B at
Ser-43. In addition, although HP1�/CBX3 is localized on the
centromeric region nearby the kinetochore (38), its phospho-
rylation by Aurora-B was unclear. Here we predicted that
HP1�/CBX3 could be phosphorylated by Aurora-B at Ser-93.
Moreover we also predicted another kinetochore-associated
kinase, PLK1 (39), as a novel substrate of Aurora-B that is
phosphorylated at both Ser-137 and Thr-210.

Taken together, using GPS 2.0 and protein-protein interac-
tion information, we successfully predicted that 32 proteins
containing 48 Ser(P)/Thr(P) sites are novel Aurora-B sub-
strates. Although the accuracy and physiology of the afore-
mentioned phosphorylation sites remain to be validated by
experimentation, our analyses performed with GPS 2.0 pro-
vide an outline of how mitotic Aurora-B phosphorylation reg-
ulates protein-protein interaction plasticity and dynamics.

DISCUSSION

In this work, we refined our previous established protein
phosphorylation predication program GPS 1.10 (Group-
based Phosphorylation Scoring) into a higher version, 2.0. In
addition, the software was renamed as Group-based Predic-
tion System because numerous PKs were clustered into a
hierarchical structure with four levels, including group, family,
subfamily, and single PK (20). Then the on-line server and
local packages of GPS 2.0 were implemented in Java with a
modified version of the Group-based Phosphorylation Scor-
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ing algorithm (10, 11). The GPS 2.0 Web server was tested on
several Internet browsers, including Internet Explorer 6.0,
Netscape Browser 8.1.3, and Firefox 2 under the Windows XP
operating system (OS), Mozilla Firefox 1.5 of Fedora Core 6
OS (Linux), and Safari 3.0 of Apple Mac OS X 10.4 (Tiger) and
10.5 (Leopard). For Windows and Linux systems, the latest

version of the Java Runtime Environment (JRE) package (Java
1.4.2 or later versions) of Sun Microsystems should be prein-
stalled for using GPS 2.0 program. However, for Mac OS,
GPS 2.0 could be directly used without any additional pack-
ages. Furthermore users could directly install the local pack-
ages of GPS 2.0 on their own computers. Again the local

TABLE IV
A proteome-wide prediction of Aurora-B-specific substrate sites

The predicted phosphorylation sites are bold. ROCK, Rho kinase; PKC, protein kinase C; LOK, lymphocyte-oriented kinase; PAK,
p21-activated kinase; GFAP, glial fibrillary acidic protein; DES, desmin; NES, nestin; VIM, vimentin; AURKA, Aurora kinase A; CENPA,
centromere protein A; BPTF, bromodomain PHD finger transcription factor; MCAK, mitotic centromere-associated kinesin; INCENP, inner
centromere protein.

Substrate Phospho.ELM Site Peptide GPS score Known kinases

HEC1 O14777 5 ---MKRSSVSSGGAG 6.1515 Aurora-B
O14777 15 SGGAGRLSMQELRSQ 4.8788 Aurora-B
O14777 49 KLSINKPTSERKVSL 3.8182 Aurora-B
O14777 55 PTSERKVSLFGKRTS 5.3636 Aurora-B
O14777 62 SLFGKRTSGHGSRNS 3.2424
O14777 69 SGHGSRNSQLGIFSS 4.303 Aurora-B

AURKA O14965 288 APSSRRTTLCGTLDY 5.8485 PKA, Aurora-A
PPP1R12A O14974 696 ARQSRRSTQGVTLTD 5.0606 ROCK1
Survivin O15392 117 KNKIAKETNNKKKEF 4.2424 Aurora-B
VIM P08670 65 GVYATRSSAVRLRSS 4.303 PAK

P08670 72 SAVRLRSSVPGVRLL 4.5758 PAK, ROCK, Aurora-B
GFAP P14136 7 -MERRRITSAARRSY 8.303 ROCK, Aurora-B

P14136 13 ITSAARRSYVSSGEM 7.5152 ROCK, PKC, CaMKII, Aurora-B
P14136 38 LGPGTRLSLARMPPP 4.5455 ROCK, PKC, CaMKII, Aurora-B

STMN1 P16949 62 AAEERRKSHEAEVLK 5.8182 PKA
DES P17661 11 YSSSQRVSSYRRTFG 4.7576 Aurora-B

P17661 16 RVSSYRRTFGGAPGF 5.2727 ROCK, Aurora-B
P17661 59 VYQVSRTSGGAGGLG 4.8788 Aurora-B

LMNB1 P20700 27 PLSPTRLSRLQEKEE 3.303
PSMA3 P25788 242 AEKYAKESLKEEDES 3.1818 CK2
CDC25B P30305 353 VQNKRRRSVTPPEEQ 6 Aurora-A
BDKRB2 P30411 373 SMGTLRTSISVERQI 3.6364 GRK-4, PKC
NES P48681 767 ETQQRRRSLGEQDQM 6.8788
CENPA P49450 7 -MGPRRRSRKPEAPR 6.3636 Aurora-A, Aurora-B
PLK1 P53350 137 LELCRRRSLLELHKR 3.2424

P53350 210 YDGERKKTLCGTPNY 3.2121 LOK
H3.1 P68431 10 TKQTARKSTGGKAPR 10.1212 Aurora-A, Aurora-B

P68431 28 ATKAARKSAPATGGV 8.9091 MAPK, Aurora-B
MDM2 Q00987 157 SHLVSRPSTSSRRRA 4.0909
KIF23 Q02241 911 NGSRKRRSSTVAPAQ 6.303

Q02241 912 GSRKRRSSTVAPAQP 6.3939
RELA Q04206 276 SMQLRRPSDRELSEP 3.2121 RSK-5
BPTF Q12830 77 PRVHRPRSPILEEKD 3.0303
TP53BP1 Q12888 1460 GAGALRRSDSPEIPF 3.2424
CBX3 Q13185 93 KDGTKRKSLSDSESD 5.1212
PIN1 Q13526 16 PGWEKRMSRSSGRVY 3.1818 PKA
IFI16 Q16666 132 GAQKRKKSTKEKAGP 4.8485 CK2
RCC1 Q6NT97 11 KRIAKRRSPPADAIP 4.4545
FLJ37981 Q8N1Q3 73 ETSSLRNSQSENSSL 5
MCAK Q99661 95 IQKQKRRSVNSKIPA 7.5455 Aurora-B
RACGAP1 Q9H0H5 387 ETGLYRISGCDRTVK 3.7879 Aurora-B
INCENP Q9NQS7 897 KPRYHKRTSSAVWNS 4.1515 Aurora-B

Q9NQS7 898 PRYHKRTSSAVWNSP 5.7273 Aurora-B
Q9NQS7 899 RYHKRTSSAVWNSPP 3.1818 Aurora-B

TD-60 Q9P258 43 RERPERCSSSSGGGS 4.1515
BAZ1B Q9UIG0 189 EDEGRRESINDRARR 5.7576

Q9UIG0 1342 KRSSRRQSLELQKCE 4.6061
CDC23 Q9UJX2 582 NTPTRRVSPLNLSSV 3.7879
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packages of GPS 2.0 support three major OSs, including
Windows, Unix/Linux, and Mac.

The performance and robustness of the prediction system
were extensively evaluated by self-consistency, leave-one-
out validation, and 4-, 6-, 8-, and 10-fold cross-validations.
Then we compared the prediction performances of GPS 2.0
with several other existing tools, including ScanSite (14),
KinasePhos (1.0 and 2.0) (15, 16), NetPhosK (13), and pkaPS
(6). ScanSite constructs a position-specific scoring matrix for
each kinase based on its known phosphorylation sites (14).
And KinasePhos 1.0 uses a maximal dependence decompo-
sition strategy and constructs a profile hidden Markov model
for each kinase (15), whereas KinasePhos 2.0 retrieves the
coupling patterns (XdZ where amino acid types X and Z are
separated by d amino acids) from the known phosphorylation
sites and uses the Support Vector Machines algorithm to train
the model (16). Also NetPhosK uses an artificial neural net-
work method for training (13). These tools first retrieve the
information from each position flanking the modified residue
(Ser/Thr or Tyr). A hidden hypothesis in their model is that the
information/function/evolution of each position is independ-
ent from its nearby residues. However, the information/func-
tion/evolution of each position is not entirely independent.
GPS 1.0 and 1.10 (10, 11), GPS 2.0, and pkaPS (6) hypothe-
size that if two PSPs share high sequence homology they may
also bear similar three-dimensional structures and biological
functions. Thus, the information of the PSPs was considered
rather than single positions. In this regard, the methods used
in GPS 1.0 and 1.10 (10, 11), GPS 2.0, and pkaPS (6) will be
superior to other strategies. Also the prediction performances
will be enhanced with a larger training data set. And the
training data set of GPS 2.0 was much larger than that for the
other tools. Furthermore we noticed that the prediction per-
formances based on different amino acids matrices were not
identical. The BLOSUM62 and other matrices are optimized to
evaluate the similarity between homologous proteins but may
not be optimized for the similarity of two PSPs. To find an
optimal or near-optimal matrix for each PK group to improve
the system stability without influencing the prediction per-
formance significantly, we developed a simple method to
automatically mutate BLOSUM62 into a near-optimal matrix
for each PK group. The prediction performances of GPS 2.0
were further improved by this approach. By comparison, the
method of GPS 2.0 was better or at least comparable with
previous approaches on several well studied PKs. However,
GPS 2.0 could predict kinase-specific phosphorylation sites
for 408 human PKs, demonstrating a great comprehensive
capacity and computational power.

Previously control and calculation of FPR were never ad-
dressed. Here we developed a simple approach to estimate
the theoretically maximal FPR for each PK cluster. We also
defined the Pr factor to estimate the proportion of real phos-
phorylation sites in predicted results. Previously the precision
was defined as TP/(TP � FP) (15). However, the TP is usually

unknown when an unknown data set is used for prediction.
Thus, a hidden hypothesis for such a precision is that the ratio
of calculated TP:FP is not changed in any given data set. The
precision will be precalculated based on the training data set.
However, when the composition of a given data set is
changed and different from the training data set, such a
precision will not be useful and valid any more. In this regard,
the Pr value should be flexible and reflect the enrichment of
substrates of the subject kinase in any given data sets. Given
a data set for prediction (N sites), if all of the sites were true
negative sites, we can easily calculate the theoretically max-
imal false positive hits as N � FPR. Then Pr value could be
calculated by (M � (N � FPR))/M where M is the total pre-
dicted hits. Because there might be real phosphorylation sites
contained in the data set, our approach will underestimated
the real precision.

As an application to depict the computational power, we
performed a large scale prediction of more than 13,000 phos-
phorylation sites in mammals with high precisions. The high
threshold was chosen with an FPR of 2% for serine/threonine
kinases and 4% for tyrosine kinases. In addition, we provided
a proteome-wide prediction for Aurora-B-specific substrates
including protein-protein interaction information. As the first
stand alone software for computational phosphorylation, GPS
2.0 will accelerate experimentation for delineating a kinase-
coupled phosphoregulatory network and pathways underly-
ing cellular plasticity and dynamics.
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