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Abstract

As an important reversible lipid modification, S-palmitoylation mainly occurs at specific cysteine residues in proteins,
participates in regulating various biological processes and is associated with human diseases. Besides experimental assays,
computational prediction of S-palmitoylation sites can efficiently generate helpful candidates for further experimental
consideration. Here, we reviewed the current progress in the development of S-palmitoylation site predictors, as well as
training data sets, informative features and algorithms used in these tools. Then, we compiled a benchmark data set
containing 3098 known S-palmitoylation sites identified from small- or large-scale experiments, and developed a new
method named data quality discrimination (DQD) to distinguish data quality weights (DQWs) between the two types of the
sites. Besides DQD and our previous methods, we encoded sequence similarity values into images, constructed a deep
learning framework of convolutional neural networks (CNNs) and developed a novel algorithm of graphic presentation
system (GPS) 6.0. We further integrated nine additional types of sequence-based and structural features, implemented
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parallel CNNs (pCNNs) and designed a new predictor called GPS-Palm. Compared with other existing tools, GPS-Palm showed
a >31.3% improvement of the area under the curve (AUC) value (0.855 versus 0.651) for general prediction of S-palmitoylation
sites. We also produced two species-specific predictors, with corresponding AUC values of 0.900 and 0.897 for predicting
human- and mouse-specific sites, respectively. GPS-Palm is free for academic research at http://gpspalm.biocuckoo.cn/.

Key words: S-palmitoylation; post-translational modification; data quality discrimination; convolutional neural networks;
graphic presentation system; parallel CNNs

Introduction
As an important and special class of post-translational modifica-
tions (PTMs), lipid modifications mainly comprise
S-palmitoylation (C16), N-myristoylation (C14), S-farnesylation
(C15), S-geranylgeranylation (C20), cholesterylation and glyco-
sylphosphatidylinositol (GPI)-anchor, depending on the type
of lipids covalently attached to modified substrate proteins [1,
2]. Unlike other tethering lipid modifications, S-palmitoylation
reversibly adds one or multiple palmitoyl moieties to internal
cysteine residues in proteins through the thioesterification reac-
tion [3–7]. S-palmitoylation effectively increases the hydropho-
bicity of protein surfaces to dynamically regulate membrane–
protein interactions [1, 8] and participates in regulating a broad
spectrum of biological processes, such as signal transduction
[2, 7], neuronal transmission [3], metabolism [9], autophagy [10]
and immunological response [11]. In addition, dysregulation of
S-palmitoylation is associated with numerous human diseases
such as cancer [11, 12], neurodegenerative disorders [13] and
diabetes [14]. Although the biological importance of protein S-
palmitoylation has been gradually recognized in recent years,
its underlying mechanisms are still unclear.

Identification of palmitoylated substrates with exact sites
is fundamental for understanding the molecular mechanisms
and regulatory roles of S-palmitoylation. Conventionally, S-
palmitoylated proteins were identified by metabolically labeling
with [3H] palmitate in vivo [3, 15]. Owing to the lack of clear
sequence motifs for S-palmitoylation recognition, pinpointing
exact sites in substrates was labor-intensive and tedious [3, 4,
7, 15]. Advances in mass spectrometry (MS)-based proteomics
technology have enabled the detection of an amount of palmi-
toylated proteins and sites [3, 9, 16–19]. In 2006, a large-scale
profiling identified 47 S-palmitoylated proteins in Saccharomyces
cerevisiae, by coupling the acyl-biotin exchange (ABE) method to
MS [3]. Later, a new assay of resin-assisted capture (RAC) was
established to purify palmitoylated proteins and increase the
sensitivity for identifying palmitoylated peptides [9, 18]. It should
be noted that when a palmitoylated peptide contains multiple
cysteine residues, it would be difficult to clearly determine
the S-palmitoylation sites [9]. Thus, computational predictions
of S-palmitoylation sites with bioinformatic approaches can
efficiently tackle this problem and generate useful candidates
for further experiments.

Here, we reviewed the mainstream computational meth-
ods and tools for the prediction of S-palmitoylation sites,
including CSS-Palm 1.0 [20], NBA-Palm 1.0 [21], CSS-Palm 2.0
[22], CKSAAP-Palm [23], PPWMs [24], IFS-Palm [25], WAP-Palm
[26], PalmPred [27], SeqPalm [28], GPS-Lipid [29] and MDD-
Palm [30] (Supplementary Table S1). Through the literature
biocuration and public database integration, we compiled a
large benchmark data set containing 3098 unique and nonho-
mologous S-palmitoylation sites in 1618 proteins, which were
experimentally identified from small- or large-scale studies

(Figure 1A, Supplementary Table S2). Then, we developed a new
method named data quality discrimination (DQD) to measure
data quality weights (DQWs), and observed that small-scale
sites had significantly higher DQWs than large-scale sites. We
incorporated DQD into our recently developed group-based
prediction system (GPS) 5.0 algorithm, which implemented
two additional methods of position weight determination
(PWD) and scoring matrix optimization (SMO) for performance
improvement (Figure 1B) and achieved an area under the
curve (AUC) value of 0.749 for predicting S-palmitoylation
sites.

Inspired by DeepVariant, a pioneering tool that encoded
genomic sequencing data into images for calling genetic
variants [31], we further designed a new strategy of number-to-
image transformation (NIT) to transform numerical sequence
similarity values into images (Figure 1C), which were then
inputted into a deep learning framework of 11-layer convo-
lutional neural networks (CNNs) for model training. Together
with all improvements, we renamed this update of GPS
algorithm as graphic presentation system 6.0, with an increased
AUC value of 0.806. Additionally, we used NIT to encode six
additional types of sequence-derived features including pseudo
amino acid composition (PseAAC), composition of k-spaced
amino acid pairs (CKSAAP), orthogonal binary coding (OBC),
physicochemical properties in the Amino Acid index database
(AAindex), autocorrelation functions (ACF) and position-specific
scoring matrix (PSSM), and three types of structural features
including accessible surface area (ASA), secondary structure
(SS) and backbone torsion angles (BTA) [20–30, 32] (Figure 1C,
Supplementary Methods, Supplementary Table S3). Parallel
CNNs (pCNNs) were implemented for training and for integrating
up to 2835 individual features (Figure 1D), and then we developed
a new tool called GPS-Palm. Through a comparison with other
existing tools, GPS-Palm exhibited a >31.34% improvement of
AUC value (0.855 versus 0.651) for general prediction of S-
palmitoylation sites. In addition, GPS-Palm also generated two
species-specific models for predicting human- and mouse-
specific sites, with AUC values of 0.900 and 0.897, respectively.
Taken together, we anticipate that GPS-Palm might be a helpful
tool to analyze S-palmitoylation, and all approaches used in this
study can be extended to predict other types of PTM sites. The
local packages of GPS-Palm were implemented in Python and
can be downloaded at: http://gpspalm.biocuckoo.cn/download.
php.

Methods
Data collection and preparation.

First, we searched PubMed with a number of keywords, such
as ‘protein palmitoylation,’ ‘palmitoylation,’ ‘cysteine palmitoy-
lation,’ ‘S-palmitoylation’ and ‘palmitoylated.’ The full texts of
all retrieved papers were carefully checked, and we manually

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/doi/10.1093/bib/bbaa038/5815620 by H

uazhong U
niversity of Science and Technology user on 13 July 2020

http://gpspalm.biocuckoo.cn/
http://gpspalm.biocuckoo.cn/download.php
http://gpspalm.biocuckoo.cn/download.php


Prediction of protein S-palmitoylation sites 3

Figure 1. The experimental procedure of the study. (A) From the scientific literature and four public databases including dbPTM [33], SwissPalm [34], HPRD [35] and

PTMD [36], we collected 5978 unique S-palmitoylation sites in 2840 proteins, after redundancy clearance. After homology elimination, the final benchmark data set

contained 3098 known sites in 1618 substrates. (B) We developed the GPS 6.0 by implementing two additional methods of DQD and NIT-based CNNs, which were

combined with PWD and SMO in the GPS 5.0 algorithm to improve the prediction performance. The basic scoring strategy was reserved. (C) Besides GPS, we used NIT

to encode six additional features, including six sequence-based features of PseAAC, CKSAAP, OBC, AAindex, ACF and PSSM, and three structural features of ASA, SS

and BTA [20–30, 32]. (D) To develop GPS-Palm, we implemented a deep learning framework of pCNNs to integrate 2835 individual features for training a single model.

The 10-fold cross-validations were performed to evaluate the accuracy.

collected 5849 experimentally identified S-palmitoylation sites
through the literature biocuration. To avoid missing any data, we
further obtained 5183 known S-palmitoylation sites from four
public databases, including dbPTM [33], SwissPalm [34], HPRD
[35] and PTMD [36]. We merged the two data sets together, and
mapped S-palmitoylation sites to primary protein sequences
downloaded from the UniProt database [37] to pinpoint the exact
modification positions. In total, we obtained 5978 nonredundant
S-palmitoylation sites in 2840 proteins.

Before training, homologous sites should be eliminated to
avoid overfitting. Thus, we used CD-HIT [38], a program for
clustering similar biological sequences, to cluster palmitoylated
protein sequences, with a threshold of 40% sequence similarity.
If two proteins are palmitoylated at the same positions with
a >40% sequence identity, only one representative sequence
was retained. Then, we defined a palmitoylation site peptide
PSP(m, n) as a cysteine residue flanked by m residues upstream
and n residues downstream. Because too many parameters
would be determined and optimized, here we chose PSP(10,
10) for a rapid training. As previously described [22], PSP(10,
10) items derived from known S-palmitoylation sites were
taken as positive data, whereas PSP(10, 10) peptides around
nonpalmitoylated cysteine residues in the same proteins were
regarded as negative data. Finally, we constructed a high-quality

benchmark data set, containing 3098 positive sites and 18 992
negative sites from 1618 substrates (Supplementary Table S2).
From the data set, we found that known S-palmitoylation sites
were experimentally characterized by different approaches.
Thus, we simply took known sites verified by conventionally
biochemical assays as ‘small-scale sites,’ whereas the remaining
sites only detected by high-throughput MS were taken as
‘large-scale sites.’ For each known palmitoylated protein, its
UniProt accession number, protein sequence, S-palmitoylation
sites, experimental type, organisms and PubMed IDs (PMIDs)
of original references were provided and could be accessed at
http://gpspalm.biocuckoo.cn/userguide.php.

Performance evaluation

To evaluate the prediction accuracy of various computational
methods, we calculated five measurements, including sensitiv-
ity (Sn), specificity (Sp), accuracy (Ac), precision (Pr) and Mathew
correlation coefficient (MCC).

Sn = TP
TP+FN

, Sp = TN
TN+FP

, Ac = TP + TN
TP+FP+TN+FN

, Pr = TP
TP+FP

MCC = (TP × TN) − (FN × FP)√
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

(1)
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For each method, the 10-fold cross-validation was repeatedly
performed 20 times, and the average Sn, Sp, Ac, Pr and MCC val-
ues were calculated. Then, the receiver operating characteristic
(ROC) curve was illustrated based on final Sn and 1-Sp scores,
and the average AUC value was computed.

The GPS 6.0 algorithm

In 2004, we developed the GPS 1.0 algorithm with the full name
of group-based phosphorylation site predicting and scoring plat-
form to measure the local sequence similarity between a given
phosphorylation site (p-site) peptide and all known p-sites in
positive data, based on a hypothesis of similar peptides poten-
tially sharing similar properties [39]. Later, we renamed it into
group-based prediction system [40], whereas the basic scoring
strategy was never changed in all versions of GPS algorithms,
and the latest GPS 5.0 algorithm implemented two additional
approaches including PWD and SMO for performance improve-
ment (http://gps.biocuckoo.cn/).

In the scoring strategy, the similarity score between two
PSP(10, 10) peptides A and B was formulated as below:

S (A, B) =
∑

1≤i≤20

WiM
(
A [i] , B [i]

)
(2)

Here, Wiwas the weight of position i, and the M(A[i], B[i])
was the substitution score of the amino acid pair (A[i], B[i])
aligned at position i. The substitution score is symmetrical with
M(a, b) = M(b, a). Initially, all position values in W were taken as
1, while the BLOSUM62 matrix was used as the starting matrix.
Then in the step of performance improvement, PWD and SMO
were iteratively adopted to optimize the trainable parameters in
W and M, respectively, until the average AUC value of the 10-fold
cross-validations was not increased any longer. In GPS 5.0, the
original penalized logistic regression (PLR) algorithm with the
ridge (L2) penalty was used for training models.

In this study, we further developed a new method named
DQD, and defined the average similarity score PS(A) between a
given PSP(10, 10) A and the whole positive data set P with T+
peptides as

PS(A) = 1
T+

T+∑
j=1

S
(
A, Pj

)
pDQWj (3)

where positive DQWj (pDQWj) was the DQW value of Pj in P, and
pDQW was a weight vector of trainable DQWs for the positive
data set. Also, we defined the average similarity score NS(A)
between a given PSP(10, 10) A and the whole negative data set
N with T− peptides as

NS(A) = 1
T−

T−∑
j=1

S
(
A, Nj

)
nDQWj (4)

where negative DQWj (nDQWj) was the DQW value of Nj in N, and
nDQW was a weight vector of trainable DQWs for the negative
data set. All values in pDQW and nDQW were initialized as 1.
We developed an improved PLR algorithm (Supplementary Meth-
ods), which was used to iteratively optimize all trainable param-
eters in DQD, PWD and SMO, until the 10-fold cross-validation
AUC value was not enhanced any longer.

In order to use CNNs for model training, we designed a new
approach named NIT to transform GPS features into images,
while both DQD and NIT-based CNNs were incorporated into our

previous approaches to develop the GPS 6.0 algorithm. For the
positive data set, we first transformed individual PS(A) values
into a similarity matrix Mat+(A), in which the 21 rows repre-
sented 21 types of pseudo amino acids (A, C, D, . . . , Y, ∗) shown in
alphabetical order, and the 20 columns denoted 20 positions in
PSP(10, 10) peptide A (from −10 to 10). Central S-palmitoylated
cysteine residues were not taken into consideration to avoid
overfitting. The matrix was shown as below:

Mat+(A) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Mat+(A) [A, −10] · · · Mat+(A) [A, 10]
...

. . .
...

...
. . .

...
Mat+(A) [∗, −10] · · · Mat+(A) [∗, 10]

⎞
⎟⎟⎟⎟⎟⎟⎠

21×20

(5)

In Mat+(A), any value Mat+(A)[a, i] for an amino acid a in the
position i of A could be calculated as below:

Mat+(A) [a, i] = 1
T+

(
a, i

) T+(a,i)∑
j=1

WiM
(
a, A [i]

)
pDQWj (6)

where T+(a, i) was the number of PSP(10, 10) items in the positive
data set with the residue a at position i. Analogously, the similar
matrix Mat−(A) was also determined between A and the whole
negative data set.

For each given PSP(10, 10) peptide A, two similarity matrices
Mat+(A) and Mat−(A) were generated and transformed into an
RGB image with two layers. The red and green channels were
used for representing Mat+(A) and Mat−(A), respectively. For the
red channel, an element E in the Mat+(A) was normalized to
0∼255 as below:

ENormalized = E − Emin

Emax − Emin
× 255 (7)

where Emax and Emin were the maximum and minimum elements
in the Mat+(A), respectively. The same procedure was also con-
ducted to Mat−(A) by using the green channel. Two channels
were merged to output an intact image, and the blue channel
was not utilized. Thus, images of two layers contained both the
similarity values of A against the whole positive and negative
data sets, respectively. The final graphic presentation of GPS fea-
tures for a given PSP(10, 10) peptide was an informative 21 × 20-
pixel double colored image. The graphic presentations for other
types of features were carefully described in Supplementary
Methods. The implementation of CNNs and pCNNs for GPS 6.0
and GPS-Palm was described as below.

A deep learning framework of pCNNs

For each feature type, a framework of 11-layer CNNs was
adopted, containing one input layer, four pairs of convolutional
and pooling layers, one fully connected (dense) layer and one
output layer (Figure 2). In the nine hidden layers, neurons were
the basic computation units, and both internal feature coding
and computational outcome were connected and propagated by
neurons inside each layer. The convolutional layers were used for
feature extraction and presentation, and a widely used rectified
linear unit (ReLU) function was used to activate the outcome of
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Figure 2. The network architecture of pCNNs. A single CNN model contained 11 layers, including one input layer, four pairs of convolutional and pooling layers for

feature presentation and selection, one dense layer for classification and one output layer for generating predictions. ReLU function and max pooling strategy were

used in convolutional layers and pooling layers, respectively. Predefined parameters for each framework of pCNNs are shown in Supplementary Table S4.

a neuron and defined as below:

ReLU(x) =
{

x, x ≥ 0
0, x < 0

(8)

where x was the weighted sum of a neuron.
In the pooling layers, feature selection and information filter-

ing were performed by the max pooling strategy. The last hidden
layer was the dense layer for generating prediction outcomes.
In order to prevent overfitting that frequently occurs in deep
learning algorithms, we used a simple dropout method to ran-
domly select a number of nodes in the dense layer and set their
corresponding scores to 0 if the Ac value went up. In the output
layer, two sigmoid nodes were set to finally calculate the score
for a given PSP(10, 10) peptide shown as below:

Score(y) = 1
1 + e−y

(9)

where y was the input of the sigmoid node derived from the
dense layer and Score(y) was a 0–1 value to represent the prob-
ability of a PSP(10, 10) to be a real S-palmitoylation site from a
single CNN model.

To integrate the 10 CNNs, the input layer first received the
10 images, in which the 10 different types of features were
graphically represented for each PSP(10, 10) peptide. Each image
representing one feature type entered a CNN model, and the 10
CNN models comprised the pCNNs. Then, the update of parame-
ters in convolutional, pooling and dense layers was continuously
performed, until the errors between outputs and targets were
not decreased any longer.

Finally, 10 Score(y) values generated from the 10 CNNs were
denoted as the secondary vector, and integrated by the improved
PLR algorithm. The final Pscore for the given PSP(10, 10) peptide

was calculated as below:

Pscore =
10∑
i=1

Score(y)i × wi (10)

where Pscore was a 0–1 value to denote the final probability of
a PSP(10, 10) to be a real S-palmitoylation site, and wi was the
weight of Score(y) derived from the ith graphic presentation. The
final pCNN models were determined based on the highest AUC
value of the 10-fold cross-validations, by using the benchmark
data set.

For model training, we used a lab computer with an Intel(R)
CoreTM i7-6700K@ 4.00 GHz central processing unit (CPU), 32 GB
of RAM and a NVIDIA GeForce GTX 960 core. The Keras version
2.0.4 (http://github.com/fchollet/keras), a highly useful neural
networks API that was written in Python and developed based on
the tensorflow 1.2.0, was adopted for a rapid parallel computing.
The Adam optimizer in Keras was adopted, by using parameters
of 0.001 for learning rate, 0.99 for the first exponential decay rate,
0.999 for the second exponential decay rate and 256 for mini-
batch size. In each framework of pCNNs for predicting general
or species-specific sites, predefined parameters including sizes
of the 11 layers, dropout ratio and number of iterations (epochs)
were shown (Supplementary Table S4).

Development of the GPS-Palm software packages

GPS-Palm was written in Python 3.6 with PyQt 5.0 (https://source
forge.net/projects/pyqt/). For convenience, local packages were
constructed by Advanced Installer (Professional License, https://
www.advancedinstaller.com/) to support three major operating
systems, including Windows, Mac OS and Linux. One or mul-
tiple protein sequences in FASTA format could be inputted for
predicting S-palmitoylation sites. Three predefined thresholds
including ‘high’ (0.8920), ‘medium’ (0.7766) and ‘low’ (0.6484)
were selected based on Sp values of ∼95%, ∼90% and ∼85%,
respectively (Supplementary Table S5). We also added an ‘All’
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option to enable the outputting of the prediction scores of all
cysteine residues. The high threshold was adopted as the default
cut-off value, and a manual was carefully written for users. GPS-
Palm could be downloadable for academic research at http://
gpspalm.biocuckoo.cn/download.php.

Results
A brief review of applicable methods for the prediction
of S-palmitoylation sites

In 1979, Schmidt et al. [41] first discovered that palmitic acids
could be covalently attached to Sindbis virus E2 and E1 glycopro-
teins and suggested that palmitoylation might play a potential
role in regulating the maturation of viral proteins glycoproteins.
Even after over 25 years, no well-defined consensus motifs were
established from traditional experimental efforts [3, 4, 7, 42].
Although a considerable proportion of known S-palmitoylation
sites follow the sequence pattern –CC– or –CXXC–, such sim-
ple motifs were difficult to enable an accurate site prediction
[3, 4, 7, 42].

Advances in bioinformatics provided a great opportunity
for the in silico prediction of PTM sites, and currently there
have been 11 computational methods designed for predicting
S-palmitoylation sites (Supplementary Table S1) [20, 21, 23, 24,
26–30]. In April 2006, we used GPS 1.0 algorithm, which was
also called as clustering and scoring strategy (CSS) at that
time, to develop the first tool named CSS-Palm 1.0 for the
prediction of S-palmitoylation sites from protein sequences [20,
40]. Later, we improved the GPS algorithm and released CSS-
Palm 2.0 [22], which was further updated into GPS-Lipid for an
extended prediction of four types of lipid modifications besides
S-palmitoylation [29]. We also used the Naïve Bayes algorithm to
develop an alternative tool of NBA-Palm [21]. Besides our studies,
other scientists also took great efforts in this field. In 2009,
Wang et al. [23] encoded the CKSAAP feature and constructed a
highly useful predictor CKSAAP-Palm, which was implemented
with the support vector machine (SVM) algorithm. Using the
same SVM algorithm, Li et al. [24] released PPWMs by integrating
three types of sequence-based and structural features, including
PSSM, ASA and SS. By developing IFS-Palm with the k-nearest
neighbor (KNN) algorithm, Hu et al. [25] not only adopted two
types of frequently used sequence features as AAindex and
PSSM, but also considered intrinsically disordered regions (IDRs)
in protein sequences, as well as three types of specific features
including the distance to transmembrane domains, the distance
to the N- or C-terminus of the protein, and a N-terminal MGC
motif for S-palmitoylation sites. In 2013, Shi et al. [26] combined
four types of features as ASA, PseAAC, ACF and PSSM, and three
algorithms of KNN, SVM and decision tree (DT) were tested to
construct an online service of WAP-Palm. Later, a SVM-based
web server of PalmPred was released by incorporating PSSM,
IDRs and SS features [27], whereas a random forest (RF)-based
tool of SeqPalm was designed by encoding PseAAC, ACF and
PSSM features [28]. In Jun 2017, by using the algorithms of
maximal dependence decomposition (MDD) and SVM, Weng
et al. [30] reported a high-quality predictor named MDD-Palm, in
which up to five types of features were incorporated, including
PseAAC, CKSAAP, PSSM, GPS and ASA. More details on these
programs, including sizes of training data sets, data sources,
features, algorithms, web links and window sizes for encoding
PSP(m, n) items were shown, as well as original references
(Supplementary Table S1).

For predicting S-palmitoylation sites, there were still three
problems needed to be addressed. First, since the functional
importance of S-palmitoylation has been more and more
recognized by biologists, thousands of S-palmitoylation sites
have been identified from both small- and large-scale studies in
recent years. A larger training data set will benefit to develop
a more accurate predictor. Second, various sequence-based
and structural features were proposed, while it is not known
whether they are all efficient in predicting S-palmitoylation
sites based on an expanded data set. Finally, the existing tools
were mainly implemented in traditionally machine-learning
algorithms, which are less effective in feature extraction and
presentation. Using deep learning algorithms might tackle this
problem for a more accurate prediction.

Compilation of a large data set of known
S-palmitoylation sites

Through the literature biocuration and public database inte-
gration, we obtained 3098 no-redundant S-palmitoylation
sites in 1618 known substrates, after homology elimination
(Supplementary Table S2). Compared with the data sets pre-
pared in other studies, our benchmark data set was much
larger, with a >4.2-fold increase of known sites (Figure 3A).
In GPS-Lipid [29] and MDD-Palm [30], only 737 and 710
unique S-palmitoylation sites were collected, respectively
(Figure 3A, Supplementary Table S1). In our data set, known S-
palmitoylated proteins with corresponding sites were collected
from 79 eukaryotic and prokaryotic organisms, including Homo
sapiens, Bos taurus, Oryctolagus cuniculus, Mus musculus, Rattus
norvegicus, Drosophila melanogaster, Saccharomyces cerevisiae,
Arabidopsis thaliana, Escherichia coli, Mycobacterium tuberculosis
and other species (Figure 3B). Two species with the most of sites
were M. musculus and H. sapiens, in which there were 1958 and 761
unique sites in 1049 and 354 proteins, respectively (Figure 3B).

In the benchmark data set, there were 1539 small-scale sites
of 667 proteins verified by conventional experimental assays,
whereas 1559 large-scale sites in 965 substrates were exclusively
identified by MS (Supplementary Table S2). The distribution of
proteins with different numbers of S-palmitoylation sites was
counted, and we found that up to 55.17% of modified pro-
teins contained ≥2 small-scale sites, while this proportion was
decreased to 32.54% for large-scale sites (Figure 3C). We further
counted the proportion of positive sites and observed that S-
palmitoylation sites occupied 18.58 and 11.16% of all cysteine
residues in S-palmitoylated proteins derived from the small- and
large-scale studies, respectively (Figure 3D). Thus, the large-scale
substrates tended to have fewer S-palmitoylation sites than
the small-scale counterparts, and the results indicated that a
considerable number of bona fide S-palmitoylation sites might be
missed as false negatives by large-scale identification, probably
due to the sensitivity limitation of MS instruments. Furthermore,
we used pLogo (https://plogo.uconn.edu/) [43], a sequence logo
generator to analyze amino acid preferences around the small-
and large-scale sites (Figure 3E). For the small-scale sites, cys-
teine residues were enriched at positions from −5 to +5, and the
two known S-palmitoylation motifs of –CC– and –CXXC– [3, 4,
7, 42] could fit such a sequence pattern well. On the contrary,
the sequence profile of large-scale sites was quite elusive, and
cysteine residues were not statistically over-represented in any
positions of PSP(10, 10) items. In this regard, false positives
might occur in large-scale studies. Taken together, our results
demonstrated that the data quality of large-scale sites might be
considerably lower than the small-scale sites.
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Figure 3. The analysis of the benchmark data set. (A) A comparison of the data set for GPS-Palm against other existing predictors. (B) The distribution of S-palmitoylated

proteins and sites in several major organisms. (C) The distribution of proteins with different numbers of S-palmitoylation sites in small- or large-scale data set. (D) The

proportion of positive sites in small- and large-scale data sets. (E) The sequence logos of small- and large-scale sites. Upper and lower characters denoted over- and

under-represented amino acid residues in positive data sets at individual positions, respectively. The height of a residue was proportional to its statistical significance

(log-odds of the binomial probability). (F) Enrichment analyses of mouse S-palmitoylated proteins based on GO biological processes, molecular functions and cellular

components (P-value < 10−5). (G) KEGG-based enrichment results (P-value < 10−5).

Using the 1049 known S-palmitoylated proteins in M. mus-
culus (Supplementary Table S2), we conducted an enrichment
analysis based on gene ontology (GO) annotations [44], with
the hypergeometric test. We observed that mostly enriched
biological processes were metabolism-associated processes,
such as oxidation–reduction process (GO:0055114), glutathione
metabolic process (GO:0006749), fatty acid metabolic process
(GO:0006631), acyl-CoA metabolic process (GO:0006637) and
tricarboxylic acid cycle (GO:0006099) (Figure 3F). The results were
highly consistent with previous studies, which demonstrated
that S-palmitoylation plays a critical role in regulating cellular
metabolism [45, 46]. Enrichment results of GO molecular
functions and cellular components also indicated that mouse S-
palmitoylated proteins were significantly over-represented in a
variety of membrane-bound organelles and might be functional
through interacting with multiple types of biomolecules
(Figure 3F). Further analyses of the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways [47, 48] supported
the enrichment of S-palmitoylated proteins in metabolism
pathways (Figure 3G). The GO- and KEGG-based enrichment
analyses were also performed for 354 human S-palmitoylated
proteins. Due to the data limitation, over-represented human
biological processes and pathways were much more diverse
than in M. musculus (Supplementary Figure S1A and B). However,
a number of enriched GO cellular components and molecular
functions, such as plasma membrane (GO:0005886), focal
adhesion (GO:0005925), membrane raft (GO:0045121), integrin
binding (GO:0005178) and cadherin binding (GO:0045296),

supported human S-palmitoylation to be highly involved in
membrane-associated functions (Supplementary Figure S1A).
Due to the conservedness of S-palmitoylation regulation, the
enrichment results would be helpful for further analyzing
regulatory roles of S-palmitoylation in eukaryotes.

The heterogeneous data quality of small- and
large-scale sites

Since both false negatives and false positives existed in large-
scale sites, directly including these sites into the training data
set might influence the prediction accuracy. To probe this
problem, we used a simple but efficient feature named OBC [21]
to encode PSP(10, 10) items, and the improved PLR algorithm
was adopted for training models (Figure 4A, Supplementary
Methods). We found the model trained on the small-scale sites
achieved a higher AUC value of 0.718 from the 10-fold cross-
validations (Figure 4B). However, mixing small- and large-scale
sites together significantly reduced the 10-fold cross-validation
AUC value to 0.684 (Two-tailed t-test, P-value < 10−15), and
exclusively using large-scale sites only produced an AUC score of
0.642 (Figure 4B). Thus, our results demonstrated that large-scale
sites were highly error-prone and could not be equally treated
as small-scale sites.

Since the data quality of small- and large-scale sites was
obviously different, such a difference should be quantitatively
measurable to discriminate the two types of S-palmitoylation
sites. From the strong sequence pattern of small-scale sites
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Figure 4. Development of DQD and NIT to distinguish small- and large-scale sites. (A) The OBC feature was adopted for encoding PSP(10, 10) items of small- and

large-scale sites, respectively. The improved PLR algorithm was used for training. (B) The 10-fold cross-validation AUC values for models trained on small-scale, all

positive and large-scale sites. (C) The implementation of DQD and NIT that transformed numerical similarity values to two-layer color images. (D) The t-SNE analysis

of images generated from small-scale, large-scale and negative sites. (E) The PCA analysis of PSP(10, 10)-based images. (F) The sequence logos of Cluster I (N-terminal),

II (C-terminal) and III (Internal) sites. The thinner characters in a column represented that a smaller number of amino acids appeared in the position. (G) Distribution

of optimized DQWs for small-scale, large-scale and negative sites.

(Figure 3E), we assumed that bona fide S-palmitoylation sites
should be more like each other, and nonpalmitoylated residues
will also be all alike. Based on this hypothesis, we developed
a new method named DQD, which automatically assigned a
unique DQW for each PSP(10, 10) item in the positive and neg-
ative data sets, based on the optimal 10-fold cross-validation
AUC value derived from the PLR-based training (Figure 4C). To
enable the use of CNNs for model training, we designed an
additional approach named NIT, which separately represented
the similarity values of a given PSP(10, 10) item A against the
positive and negative data sets into two matrices Mat+(A) and
Mat−(A). Then, NIT transformed the two similarity matrices into
a two-layer RGB image of 21 × 20 pixels (Figure 4C).

Using DQD and NIT, all small-scale, large-scale and neg-
ative sites in the benchmark data sets were transformed
into individual images, which were further analyzed by t-
distributed stochastic neighbor embedding (t-SNE). From the
results, we found that the three types of sites could be clearly
distinguished (Figure 4D). Most of the small-scale sites were
far from negative sites, and large-scale sites were in between
(Figure 4D). Furthermore, the principal component analysis
(PCA) method was used to analyze the image data. It could be
found that negative sites condensed a single cluster, and large-
scale sites were distributed between small-scale and negative
sites (Figure 4E). Interestingly, small-scale sites were separated
into three distinct clusters (Figure 4E). Again, pLogo [43] was
used to analyze the sequence preference for each cluster.

Cluster I and II sites were palmitoylated at positions nearby
N- and C-termini of protein sequences, whereas the Cluster
III sites located in internal positions of proteins (Figure 4F).
The distribution of optimized DQWs was analyzed, and we
found that the average DQW value (0.824) of large-scale
sites was significantly lower than small-scale (1.229) sites
(Figure 4G).

Development of GPS-Palm for predicting
S-palmitoylation sites

For the prediction of general S-palmitoylation sites, we encoded
PSP(10, 10) items by using seven sequence-based features
including GPS, PseAAC, CKSAAP, OBC, AAindex, ACF and PSSM,
and three structural features including ASA, SS and BTA [20–
30, 32] (Figure 1C, Supplementary Methods, and Supplementary
Table S3). Then, pCNNs were adopted for training models
(Figure 2), and predefined parameters in each network were
present (Supplementary Table S4). The 10-fold cross-validation
was performed for each feature, and AUC values ranged from
0.562 (BTA) to 0.806 (GPS 6.0) (Figure 5A). From the results, it
could be found that the GPS feature was more informative than
other features. By integrating the 10 types of features, GPS-Palm
reached a 10-fold cross-validation AUC value as 0.855 (Figure 5A).
For the GPS 6.0 algorithm, we further evaluated whether the
two new methods of DQD and NIT-based CNNs could improve
the prediction performance (Figure 5B). Through the 10-fold
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Figure 5. The development of GPS-Palm. (A) The 10-fold cross-validation AUC values were individually calculated for the 10 types of features. GPS-Palm integrated all

these features and achieved a better accuracy. (B) In GPS 6.0, all methods including PWD, SMO, DQD and NIT-based CNNs were useful for performance improvement. (C)

A comparison of GPS-Palm to four existing predictors, including CSS-Palm 2.0 [22], SeqPalm [28], GPS-Lipid [29] and MDD-Palm [30]. (D) The GUI interface of GPS-Palm.

Two oncogenic proteins including PD-L1 [11] and MC1R [12] were selected as examples for the prediction of S-palmitoylation sites.

cross-validations, the original GPS 1.0 algorithm achieved an
AUC value of 0.598, while the AUC score of GPS 5.0 algorithm
with PWD and SMO could be increased to 0.672 (Figure 5B).
Sequentially including DQD and CNNs could further enhance
the accuracy to 0.749 and 0.806, respectively (Figure 5B).

Furthermore, we implemented two additional species-
specific predictors by exclusively using human or mouse
S-palmitoylation sites for model training (Supplementary
Figure S2). For predicting human-specific sites, the 10-fold
cross-validation AUC scores ranged from 0.665 (CKSAAP) to
0.865 (GPS 6.0) for individual features, whereas the pCNN-
based integration of the 10 types of features achieved a
better accuracy of 0.900 (Supplementary Figure S2A). Compared
with GPS 1.0, sequentially adding PWD, SMO, DQD and NIT-
based CNNs increased the AUC values from 0.616 to 0.643,
0.676, 0.754 and 0.865, respectively (Supplementary Figure S2B).
To predict mouse-specific sites, the 10-fold cross-validation
AUC scores were calculated from 0.651 (CKSAAP) to 0.849
(GPS 6.0) for individual features, and the combination of the
10 types of features reached a superior AUC value of 0.897
(Supplementary Figure S2C). Again, we compared GPS 6.0 to 1.0
and observed that each of the four new methods contributed to
performance improvement (Supplementary Figure S2D).

To exhibit the superiority of GPS-Palm, we compared it to
other existing tools, including CSS-Palm 2.0 [22], SeqPalm [28],
GPS-Lipid [29] and MDD-Palm [30] (Supplementary Table S1). We
directly submitted the benchmark data set into these tools to

calculate the AUC values, which were compared with the 10-
fold cross-validation result of GPS-Palm. It could be found that
the accuracy of GPS-Palm was much higher than the second
one, MDD-Palm [30], with a >31.34% increase of the AUC value
(0.855 versus 0.651) (Figure 5C). Finally, local packages of GPS-
Palm were implemented in Python 3.6 and PyQt 5.0, with an
easy-to-use GUI interface (Supplementary Methods). Users could
input one or multiple protein sequences, select a threshold
and then click on ‘Submit’ for a prediction (Figure 5D). The
results will be shown in a tabular format, including sequence
ID, palmitoylated position, flanking peptide, predicted score
and predefined cut-off value (Figure 5D). In addition, the button
‘Load’ could be clicked to load a sequence file for a large-scale
prediction.

Discussion
As the only type of reversible lipid modification, S-palmitoylation
plays a vital role in regulating a broad spectrum of biological
processes [1–3, 7–11], whereas the dysregulation of protein
S-palmitoylation is associated with human diseases [13, 14,
49]. For example, multiple cysteine residues in the nucleotide
oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2)
were discovered to be modified by the zinc finger DHHC-
type palmitoyltransferase 5 (ZDHHC5), and S-palmitoylation of
the two intracellular pattern-recognition proteins is essential
for activating immune responses in bacterial sensing [50].
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Figure 6. Additional analyses of GPS-Palm. (A) An additional comparison of GPS-Palm with MDD-Palm [30], by using the same training data set (Supplementary Table S1).

The self-consistency accuracy of MDD-Palm was calculated and compared to the 10-fold cross-validation AUC value of GPS-Palm. (B) We used GPS-Palm to generate

scores for all collected S-palmitoylation sites (known), and the number of sites predicted under the high threshold was counted (predicted) (Supplementary Table S2).

Also, Chen et al. [21] used our NBA-Palm 1.0 to predict
melanocortin-1 receptor (MC1R), an important G-protein-
coupled receptor (GPCR) in regulating mammalian pigmentation,
to be potentially modified at C78 and C315 [12]. C315 was
validated as the major MC1R S-palmitoylation site that is
catalyzed by the palmitoyltransferase ZDHHC13, whereas
MC1R palmitoylation enhances pigmentation and cell cycle
arrest to inhibit melanomagenesis [12]. In particular, the site
was predicted as the only positive hit by GPS-Palm under
the high threshold (Figure 5D). More recently, Niu et al. [51]
identified signal transducer and activator of transcription 3
(STAT3), a multifaceted oncoprotein, to be S-palmitoylated by
ZDHHC19 at C687 and C712. STAT3 S-palmitoylation increases
its homodimerization and transcriptional activity, and plays a
critical role in promoting inflammation and tumorigenesis. In
this regard, the identification of new S-palmitoylated substrates
with exact sites is the foundation of understanding the
molecular mechanisms and regulatory roles of S-palmitoylation.
In contrast with tedious and laborious experimental assays [3,
4, 7, 15], computational predictions of S-palmitoylation sites
in proteins can greatly narrow down potential candidates for
further experimental consideration. To date, 11 predictors have
been constructed for this purpose (Supplementary Table S1).

In this study, we first developed the GPS 6.0 algorithm by
implementing two new methods of DQD and NIT-based CNNs
(Figure 1A and B). The original methods of PWD and SMO in GPS
5.0 were reserved, as well as the basic scoring strategy. Using
DQD could increase the 10-fold cross-validate AUC value from
0.672 to 0.749, and NIT-based CNNs further improved the AUC
value to 0.806 (Figure 5B). In our benchmark data set, small-
scale sites could be regarded as high-quality positive data.
However, both false negatives and false positives existed in
large-scale sites, which could be expected to have a lower data
quality. Indeed, we found that DQWs of large-scale sites were
significantly lower than in small-scale sites, from the results
of DQD (Figure 4G). The integration of these large-scale sites
by DQD and NIT rather than simply including or discarding

them not only maximized the size of the training data set,
but also achieved a dramatically increased accuracy for the
prediction of S-palmitoylation sites. Besides GPS 6.0, we further
integrated nine additional features and implemented a deep
learning framework of pCNNs for model training (Figure 1C).
By comparison, GPS-Palm was much better than other existing
tools (Figure 5C). Since other tools used much smaller training
data sets, the higher accuracy of GPS-Palm might be attributed
to the methodology or the larger training data set. To exhibit the
superiority of our methods, we re-retrained a pCNN model by
using the training data set of MDD-Palm [30], which prepared
710 positive and 5676 negative sites (Supplementary Table S1).
The 10-fold cross-validation AUC value was calculated as 0.774,
which was much better than MDD-Palm [30] (Figure 6A). Using
GPS-Palm, we assigned prediction scores for all small- and
large-scale sites (Supplementary Table S2). From 3098 known
S-palmitoylation sites, 1809 (58.4%) sites were predicted with
scores greater than the high cut-off value of 0.8920 (Figure 6B).
Under the high threshold, 68.2% (1050/1539) small-scale sites
and 48.7% (759/1559) large-scale sites were predicted (Figure 6B).
Thus, the data quality of small-scale sites was much higher,
and our predictions will be useful to prioritize highly potential
candidates for further experimental researches.

For the future, we will continue to maintain and improve
GPS-Palm. The training data set will be enlarged when newly
identified S-palmitoylation sites are available. Also, more
sequence-based and structural features, as well as other types of
cutting-edge artificial intelligence algorithms, will be tested and
included if the prediction accuracy can be increased. Recently,
we participated in a collaborative study, in which human
programmed-death ligand 1 (PD-L1) was predicted and verified
to be palmitoylated at C272, and this S-palmitoylation event
inhibits T-cell-mediated immune responses against tumors,
through blocking its mono-ubiquitination to prevent endosomal
sorting complexes required for transport (ESCRT)-mediated
sorting to the multivesicular body (MVB) and lysosomal
degradation of PD-L1 [11]. Thus, the quantitative proteomic
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and PTMomic data sets could be incorporated to predict
functional impacts of S-palmitoylation sites. It should be noted
that molecular fluctuations of big omic data could be simply
visualized and represented in heatmap images, which can be
directly processed by CNNs. Thus, it is possible to develop a
more general presentation system to integrate both sequences
and omic data sets into a single framework to achieve a higher
accuracy for predicting PTM substrates and/or sites.

Taken together, although many efforts can be taken in the
near future, our study provided a highly accurate tool for predict-
ing S-palmitoylation sites from protein sequences. We anticipate
that the methods used in this work can be easily extended for
other types of PTM predictions.

Key Points
• We reviewed the 11 existing tools for the prediction

of S-palmitoylation sites, while the training data sets,
features and algorithms used in these tools were sum-
marized.

• We developed a new method named data quality dis-
crimination (DQD) to measure and discriminate differ-
ent data quality weights (DQWs) of S-palmitoylation
sites identified from small- or large-scale experi-
ments.

• We encoded numerical features into images, inte-
grated DQD and convolutional neural networks (CNNs)
into our previous methods and developed a new algo-
rithm of graphic presentation system (GPS) 6.0.

• We further incorporated nine additional features and
implemented a framework of parallel CNNs (pCNNs)
to develop a new tool of GPS-Palm, which exhibited a
higher accuracy than other exiting tools.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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