Supplementary materials:

GPS-PUP: Computational prediction of pupylation sites in prokaryotic proteins

Zexian Liu^{1,2†}, Qian Ma^{1†}, Jun Cao¹, Xinjiao Gao¹ Jian Ren^{3‡}, Yu Xue^{1,2‡}

¹Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, China
¹Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
³State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China

Running title: Prediction of pupylation sites

[†]The two authors contributed equally to this work.

^{*}To whom correspondence should be addressed. Tel: +86-27-87793903; Fax: +86-27-87793172;

Email: xueyu@mail.hust.edu.cn or xueyuhust@gmail.com.

Correspondence may also be addressed to Jian Ren. Tel/Fax: +86-20-39943788; Email: renjian.sysu@gmail.com.

Supplementary Materials & Methods

Data preparation

We manually collected experimentally identified pupylated substrates along with their location sites by searching PubMed with the keywords of "pupylation" and "prokaryotic ubiquitin", followed by checking the scientific literature published before March 22nd, 2011. A dataset with 146 experimentally verified pupylation sites from 131 proteins was obtained. The corresponding sequences were retrieved from the UniProt database (http://www.uniprot.org/).¹

As previously described,²⁻⁷ we defined a *pupylation site peptide* PSP(*m*, *n*) as a lysine (K) residue flanked by *m* amino acids upstream and *n* amino acids downstream, while the known pupylation sites were taken as positive data (+) and all other non-pupylated lysines were regarded as negative data (-). Since the redundancy of homologous sites in the positive data (+) might lead to an overestimate, we used CD-HIT to cluster the protein sequences,⁸ followed by re-alignment with BLAST packages and a manual check of the proteins with ≥40% identity.⁹ If two pupylation sites from two homologous proteins were at the same position according to the sequence alignment, only one site was preserved while the other site and its corresponding sequence were discarded. Ultimately, the non-redundant training dataset contained 109 substrates with 127 positive sites and 1,405 negative sites. The 127 experimentally verified pupylation sites are shown in Table S1.

The algorithms

During the past several years, we developed the GPS (Initially defined as Group-based Phosphorylation Scoring and later renamed as Group-based Prediction System) series of algorithms mainly for the prediction of post-translational modification (PTM) sites in proteins.²⁻⁷ Although various versions of GPS algorithm employed different approaches for performance improvement (Table S4), the fundamental hypothesis of the scoring strategy was not changed.

In the scoring strategy, we hypothesized that similar short peptides exhibit similar biochemical properties and functions.²⁻⁷ Then we used an amino acid substitution matrix, e.g.,

2

BLOSUM62, to calculate the similarity between the two PSP(m, n) peptides of A and B as below:

$$S(A,B) = \sum_{-m \le i \le n} Score(A[i], B[i])$$

Score(A[i], B[i]) represents the substitution score of the two amino acid of A[i] and B[i] in an amino acid substitution matrix, e.g., BLOSUM62. If S(A, B)<0, we simply redefined it as S(A, B)=0.

For performance improvement, we adopted a computational pipeline of three sequential steps of motif length selection (MLS), weight training (WT) and matrix mutation (MaM).

1) Motif length selection (MLS). In this step, the combinations of PSP(m, n) (m = 1, ..., 30; n = 1, ..., 30) were extensively tested, while the optimized combination of PSP(m, n) with the highest leave-one-out (LOO) performance was determined. We fixed the *Sp* at 80% to compare the *Sn* values. The PSP(8, 18) was determined in this study.

2) Weight training (WT). We updated the substitution score between two PSP(m, n) peptides *A* and *B* as:

$$S'(A,B) = \sum_{-m \le i \le n} w_i Score(A[i], B[i])$$

The w_i is the weight of position *i*. Again, if S'(A, B) < 0, we simply redefined it as S'(A, B)=0. Initially, the *w* was defined as 1 for each position. We randomly picked out the weight of any position for +1 or -1, and adopted the manipulation if the *Sn* value of the re-computed LOO result with the *Sp* fixed at 80% was increased. The process was repeated until convergence was reached. The weights of the PSP(8, 18) were 1, 0, 0, 3, 2, 2, 3, 1, 1 (K), 1, 1, 0, 1, 1, 2, 3, 1, 0, 1, -1, 0, 1, 0, 2, 1, 1, and 3. From the results, we proposed that the upstream amino acids are more important for the lysine residue to be pupylated.

3) Matrix mutation (MaM). As previously described,²⁻⁵ BLOSUM62 was chosen as the initial matrix, and the leave-one-out performance was calculated. Subsequently, we fixed the Sp as 80% to improve the Sn by randomly picking out an element of the matrix for +1 or -1. The procedure was terminated when the Sn value was not increased any further.

For comparison, the GPS 2.1 algorithm and PSSM algorithm were also implemented. The GPS 2.1 algorithm was carried out as previously described.⁵ For the PSSM algorithm,¹⁰ the position-specific scoring matrix was constructed with positive PSP(m, n) peptides while the background distribution was calculated from both the positive and negative PSP(m, n) peptides. $P_{+}[i]$ and $P_{i}[i]$ were defined as the probability in the position-specific scoring matrix and the background,

respectively. Then the score of a given PSP(m, n) was calculated as:

$$Score[PSP(m,n)] = \sum_{-m \le i \le n} \log_2(P_+[i]/P_-[i])$$

Performance evaluation

As previously described,²⁻⁵ we used the four measurements of accuracy (*Ac*), sensitivity (*Sn*), specificity (*Sp*), and Mathew's Correlation Coefficient (*MCC*) to evaluate the prediction performance of GPS-PUP. Also, the precision (*Pr*) was calculated. The five measurements were defined as below:

$$Ac = \frac{TP + TN}{TP + FP + TN + FN}, \quad Sn = \frac{TP}{TP + FN}, \quad Sp = \frac{TN}{TN + FP}, \quad Pr = \frac{TP}{TP + FP}, \text{ and}$$
$$MCC = \frac{(TP \times TN) - (FN \times FP)}{\sqrt{(TP + FN) \times (TN + FP) \times (TP + FP) \times (TN + FN)}}.$$

In this work, the leave-one-out validation and 4-, 6-, 8- and 10-fold cross-validations were performed. The Receiver Operating Characteristic (ROC) curves and AROCs (area under ROCs) were also drawn and analyzed.

Implementation of the online service and local packages

The online service and local packages of GPS-PUP 1.0 were implemented in JAVA. For the online service, we tested the GPS-PUP 1.0 on a variety of internet browsers, including Internet Explorer 6.0, Netscape Browser 8.1.3 and Firefox 2 under the Windows XP Operating System (OS), Mozilla Firefox 1.5 of Fedora Core 6 OS (Linux), and Safari 3.0 of Apple Mac OS X 10.4 (Tiger) and 10.5 (Leopard). For the Windows and Linux systems, the latest version of Java Runtime Environment (JRE) package (JAVA 1.4.2 or later versions) of Sun Microsystems should be pre-installed. However, for Mac OS, GPS-PUP 1.0 can be directly used without any additional packages. For convenience, we also developed local packages of GPS-PUP 1.0, which worked with the three major Operating Systems, Windows, Linux and Mac.

Statistical analysis

In order to analyze the functional abundance and diversity of pupylation, we downloaded the

gene ontology (GO) (03/28/2011)¹¹ association files from the GOA database at the EBI (http://www.ebi.ac.uk/goa). There are 4,470 M. smegmatis proteins annotated with at least one GO term, with 267 annotated pupylation substrates. Here we defined:

N = number of proteins in the *M. smegmatis* proteome annotated by at least one GO term

n = number of proteins in the *M. smegmatis* proteome annotated by the GO term t

M = number of proteins in the *M*. smegmatis pupylated substrates annotated by at least one GO term

m = number of proteins in the *M. smegmatis* pupylated substrates annotated by the GO term

t

Then the enrichment ratio of the GO term t was calculated, and the hypergeometric distribution equation¹² was used to calculate the *p*-value as below:

$$Enrichment_ratio = \frac{\frac{m}{M}}{\frac{n}{N}}$$

$$p-value = \sum_{m'=m}^{n} \frac{\binom{M}{m'}\binom{N-M}{n-m'}}{\binom{N}{n}} \quad (Enrichment_ratio \ge 1), \text{ or}$$

$$p-value = \sum_{m'=0}^{m} \frac{\binom{M}{m'}\binom{N-M}{n-m'}}{\binom{N}{n}} \quad (Enrichment_ratio \le 1), \text{ or}$$

(*Enrichment* ratio < 1)

In this work, we only consider the over-represented GO groups with an *Enrichment_ratio* \geq 1 and p-value < 0.05.

Supplementary References

- 1. UniProt Consortium, *Nucleic Acids Res.*, 2010, **38**, D142-148.
- 2. Y. Xue, J. Ren, X. Gao, C. Jin, L. Wen and X. Yao, *Mol. Cell. Proteomics*, 2008, 7, 1598-1608.
- 3. Y. Xue, Z. Liu, X. Gao, C. Jin, L. Wen, X. Yao and J. Ren, *PLoS One*, 2010, **5**, e11290.
- 4. Z. Liu, J. Cao, Q. Ma, X. Gao, J. Ren and Y. Xue, *Mol.Biosyst.* 2011, 7, 1197-1204.
- Y. Xue, Z. Liu, J. Cao, Q. Ma, X. Gao, Q. Wang, C. Jin, Y. Zhou, L. Wen and J. Ren, *Protein Eng. Des. Sel.*, 2011, 24, 255-260.
- Y. Xue, F. Zhou, M. Zhu, K. Ahmed, G. Chen and X. Yao, *Nucleic Acids Res.*, 2005, 33, W184-187.
- F. F. Zhou, Y. Xue, G. L. Chen and X. Yao, *Biochem. Biophys. Res. Commun.*, 2004, 325, 1443-1448.
- 8. W. Li and A. Godzik, *Bioinformatics*, 2006, 22, 1658-1659.
- M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis and T. L. Madden, *Nucleic Acids Res.*, 2008, 36, W5-9.
- 10. M. Gribskov, A. D. McLachlan and D. Eisenberg, *Proc. Natl. Acad. Sci. U. S. A.*, 1987, **84**, 4355-4358.
- D. Barrell, E. Dimmer, R. P. Huntley, D. Binns, C. O'Donovan and R. Apweiler, *Nucleic Acids Res.*, 2009, **37**, D396-403.
- 12. F. Zhou, Y. Xue, H. Lu, G. Chen and X. Yao, *FEBS Lett.*, 2005, **579**, 3369-3375.

Supplementary Tables

Supplementary Table S1 – We manually collected 127 experimentally identified pupylation sites in 109 unique proteins from the scientific literature (PubMed). *a*. UniProt, the UniProt accession numbers of pupylation substrates; *b*. Position, the positions of the pupylation sites; *c*. PMID, the primary references for the experimentally verified pupylation sites.

UniProt ^a	Position ^b	Organism	PMID ^c
A0QNF6	147	M. smegmatis	20631680
A0QP32	485	M. smegmatis	20094657
A0QP90	51	M. smegmatis	20094657
A0QPN2	408	M. smegmatis	20094657
A0QQ65	124	M. smegmatis	20631680
A0QQU5	116	M. smegmatis	20631680
A0QQU5	132	M. smegmatis	20066036;20094657
A0QS98	188	M. smegmatis	20631680
A0QSE0	96	M. smegmatis	20094657
A0QSL6	66	M. smegmatis	20631680
A0QSU4	99	M. smegmatis	20094657
A0QUV7	210	M. smegmatis	20631680
A0QUY3	313	M. smegmatis	20631680
A0QUY9	380	M. smegmatis	20631680
A0QUZ0	61	M. smegmatis	20631680
A0QV10	262	M. smegmatis	20094657
A0QVB9	36	M. smegmatis	20094657;20631680
A0QVB9	111	M. smegmatis	20631680
A0QVB9	131	M. smegmatis	20631680
A0QWV9	172	M. smegmatis	20631680
A0QWW2	257	M. smegmatis	20094657;20631680
A0QWX9	132	M. smegmatis	20094657
A0QWX9	219	M. smegmatis	20631680
A0QX20	394	M. smegmatis	20094657
A0QX81	41	M. smegmatis	20631680
A0QX93	355	M. smegmatis	20094657
A0QXX7	149	M. smegmatis	20631680
A0QYD4	43	M. smegmatis	20094657
A0QZA1	77	M. smegmatis	20066036
A0QZA1	109	M. smegmatis	20094657;20631680
A0QZE3	217	M. smegmatis	20094657
A0R066	299	M. smegmatis	20094657
A0R079	14	M. smegmatis	20094657
A0R0B3	58	M. smegmatis	20631680

A0R0B3	79	M. smegmatis	20094657;20631680
A0R0B4	53	M. smegmatis	20631680
A0R0B5	84	M. smegmatis	20631680
A0R0W1	458	M. smegmatis	20631680
A0R0W4	218	M. smegmatis	20631680
A0R1B5	115	M. smegmatis	20094657
A0R1V9	25	M. smegmatis	20631680
A0R1V9	29	M. smegmatis	20631680
A0R1V9	41	M. smegmatis	20094657;20631680
A0R1Y7	187	M. smegmatis	20094657;20631680
A0R218	320	M. smegmatis	20631680
A0R2G5	299	M. smegmatis	20631680
A0R2V7	362	M. smegmatis	20094657;20631680
A0R2W6	58	M. smegmatis	20631680
A0R342	36	M. smegmatis	20631680
A0R3D2	21	M. smegmatis	20631680
A0R4C9	67	M. smegmatis	20094657;20631680
A0R4Z5	218	M. smegmatis	20631680
A0R518	65	M. smegmatis	20094657
A0R566	11	M. smegmatis	20094657
A0R5E1	47	M. smegmatis	20094657
A0R5M8	242	M. smegmatis	20631680
A0R5R7	339	M. smegmatis	20094657;20631680
A0R635	375	M. smegmatis	20094657
A0R647	10	M. smegmatis	20094657
A0R6E3	30	M. smegmatis	20631680
A0R6E3	121	M. smegmatis	20094657
A0R6Q0	76	M. smegmatis	20094657
A0R7F9	33	M. smegmatis	20094657
A0R7G6	65	M. smegmatis	19028679;20066036;20094657
P0CG99	310	M. smegmatis	20094657
P53649	38	M. smegmatis	20094657;20631680
P53649	90	M. smegmatis	20094657
O05598	528	M. tuberculosis	20066036;20094657
O05814	173	M. tuberculosis	20066036;20094657
O06188	82	M. tuberculosis	20066036
O06391	136	M. tuberculosis	20066036
O33294	502	M. tuberculosis	20066036
O33341	289	M. tuberculosis	20066036
O53176	127	M. tuberculosis	20066036
O53204	338	M. tuberculosis	20066036
O53226	12	M. tuberculosis	20066036
O53226	150	M. tuberculosis	20066036
O53442	145	M. tuberculosis	20066036

O53618	65	M. tuberculosis	20066036
O53665	168	M. tuberculosis	20066036
O53665	381	M. tuberculosis	20066036
O53871	189	M. tuberculosis	20066036
O69687	227	M. tuberculosis	20066036
O69687	231	M. tuberculosis	20066036;20094657;20631680
O86352	283	M. tuberculosis	20066036
P09621	100	M. tuberculosis	20066036
P0A4X0	209	M. tuberculosis	20066036;20094657
P0A508	322	M. tuberculosis	20066036
P0A556	307	M. tuberculosis	20066036
P0A5B7	64	M. tuberculosis	20066036
P0A5B7	85	M. tuberculosis	20066036
P0A5B7	114	M. tuberculosis	20066036
P0A5B7	132	M. tuberculosis	20066036
P0A5H3	334	M. tuberculosis	20066036
P0A5L2	81	M. tuberculosis	20066036
P0A5U4	762	M. tuberculosis	20066036
P0A5Z4	204	M. tuberculosis	20066036
P0CG95	98	M. tuberculosis	20066036;20094657;20631680
P17670	202	M. tuberculosis	20066036
P60176	474	M. tuberculosis	20066036;20094657
P60796	271	M. tuberculosis	20066036;20631680
P63345	591	M. tuberculosis	20066036;20094657
P63458	173	M. tuberculosis	18832610;20066036;20094657
P63523	355	M. tuberculosis	20066036
P63568	314	M. tuberculosis	20066036;20094657
P63673	499	M. tuberculosis	20066036
P64245	363	M. tuberculosis	20066036;20094657
P65161	44	M. tuberculosis	20066036;20094657
P65232	29	M. tuberculosis	20066036
P65277	154	M. tuberculosis	20066036
P65573	45	M. tuberculosis	20066036
P65880	292	M. tuberculosis	20066036;20094657
P66056	101	M. tuberculosis	20066036;20094657
P66902	151	M. tuberculosis	20066036;20094657;20631680
P69440	23	M. tuberculosis	20066036;20631680
P69440	94	M. tuberculosis	20066036
P71724	47	M. tuberculosis	20066036
P71973	44	M. tuberculosis	20066036;20094657
P77899	345	M. tuberculosis	20066036;20094657
P77899	400	M. tuberculosis	20631680
P96382	362	M. tuberculosis	20066036
P96825	280	M. tuberculosis	20066036

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is C The Royal Society of Chemistry 2011

Q10504	346	M. tuberculosis	20066036;20094657
Q10530	328	M. tuberculosis	20066036
Q10682	47	M. tuberculosis	20066036
Q50685	354	M. tuberculosis	20066036
Q7D8W0	428	M. tuberculosis	20066036

Supplementary Table S2 – From both large-scale and small-scale experimental studies we also collected 238 potentially pupylation substrates for which the exact pupylation sites had still not been experimentally determined. The default threshold (medium) was adopted for GPS-PUP 1.0.

UniProt	Predicted pupylation sites	Organism	PMID
A0QNZ3	115, 216, 264	M. smegmatis	20631680
A0QNZ7	157	M. smegmatis	20631680
A0QP06	241, 556, 559	M. smegmatis	20094657
A0QP11	395, 398, 440, 535	M. smegmatis	20631680
A0QPE7	96, 146, 164, 249, 254, 272, 377	M. smegmatis	20631680
A0QPE8	63, 186, 242, 399, 406	M. smegmatis	20094657;20631680
A0QQC8	226, 228, 483, 491, 538, 546, 556, 572, 619, 622	M. smegmatis	20631680
A0QQF0	124, 142, 199, 301, 432, 439, 444, 477, 560, 570, 821	M. smegmatis	20631680
A0QQF9	302	M. smegmatis	20631680
A0QQI6	14	M. smegmatis	20631680
A0QQJ4	10, 184, 335	M. smegmatis	20631680
A0QQL0	241	M. smegmatis	20094657;20631680
A0QQU1	65, 101	M. smegmatis	20631680
A0QQW8	64, 216, 220	M. smegmatis	20094657;20631680
A0QQX6	136, 169, 255, 334	M. smegmatis	20094657
A0QR00	219, 246, 247	M. smegmatis	20094657;20631680
A0QR08	69, 75, 275	M. smegmatis	20631680
A0QR33	95, 340	M. smegmatis	20631680
A0QR89	58, 110, 167, 307, 394, 395	M. smegmatis	20094657;20631680
A0QRM0	11, 108, 109, 112, 136	M. smegmatis	20631680
A0QRU5	98, 181, 255, 266	M. smegmatis	20094657
A0QS07	9, 201	M. smegmatis	20631680
A0QS36	96	M. smegmatis	20631680
A0QS46	31, 151	M. smegmatis	20094657;20631680
A0QS62	122, 168, 169	M. smegmatis	20631680
A0QS66	176, 470, 634, 775, 786	M. smegmatis	20631680
A0QS81	180, 239	M. smegmatis	20631680
A0QS85	368, 377, 550	M. smegmatis	20094657;20631680
A0QSD0	46	M. smegmatis	20094657;20631680
A0QSD1	30, 213, 217	M. smegmatis	20631680
A0QSD2	45, 94, 153, 210	M. smegmatis	20094657;20631680
A0QSD4	276, 277	M. smegmatis	20094657;20631680
A0QSD5	89	M. smegmatis	20631680
A0QSD7	40, 92	M. smegmatis	20631680
A0QSD8	124	M. smegmatis	20631680
A0QSG0	94, 99, 103	M. smegmatis	20631680

A0QSG1 55 A0QSG4 139, 176, 179 A0QSG5 4, 27, 126 A0QSG8 5, 128 A0QSH8 160 A0QSK7 143, 282 A0QSL5 65, 111, 120, 121 A0QSL8 191 143, 149 A0QSP9 100 A0QSS3 A0QSS4 74, 243, 267, 388, 389, 402, 426, 473, 523 A0QSX3 3, 42, 53, 109 A0QSY5 281 A0QSZ3 151, 323, 591, 634, 688, 692, 734 A0QT01 52 4, 72, 75, 492 A0QT04 36, 88, 583 A0QT08 A0QT22 100, 192 11, 156, 165, 176, 394, 512, 598 A0QTE1 A0QTE3 171 A0QTE7 73, 216, 405, 417, 473 62, 116 A0QTK6 A0QU00 115, 205, 264 130, 195, 406 A0QU53 37, 103 A0QU58 A0QU93 45, 158, 282 A0QUV6 76, 150, 234 A0QUX1 233, 402, 408, 412, 463, 481, 484 A0QUX7 67, 71, 170 A0QUX8 57, 290, 320 142, 332, 469 A0QUY2 A0QUY6 65, 256, 258, 259 A0QV37 12, 94, 125 A0QV45 8, 77, 94 A0QV51 232, 301 A0QVB1 278, 283 A0QVB8 58, 109, 132, 178, 215 A0QVE0 115, 125, 162, 176 A0QVL0 74, 325, 397 A0QVQ3 34 A0QVQ5 245, 260, 709, 746, 750 A0QVQ8 51, 230, 231, 357 A0QVR8 86

M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20631680

A0QVT1 66, 100 A0QVX6 121, 333, 342, 385, 400, 419, 452 A0QVY9 40 A0QVZ3 67, 226, 229 A0QW25 44, 229 A0QWG8 175, 213, 275 A0QWQ9 198, 314, 368 A0QWS8 17, 29, 101 A0QWT2 5,410 A0QWT3 341, 396 A0QWV0 170, 207, 230 A0QWW3 4, 130, 140 A0QWW4 193 A0QWY0 255, 297, 600, 652 A0QX01 129 A0QX83 180 A0QX96 98, 125, 382, 410 A0QXA3 128, 259, 317, 431 A0QXC8 140, 239, 283, 286 A0QXD8 245, 343, 356 A0QXH9 118, 150 250 A0QY23 A0QYD5 304 389 A0QYE0 A0QYE8 230, 407 A0QYF5 652 A0QYF7 411 A0QYQ7 337, 387, 423, 585 A0QYS6 104, 224, 394 A0QYT2 139, 187, 280 A0QYY6 93, 178, 208, 243, 426, 434, 474 A0QZ33 49 A0QZ46 52, 186, 243 A0QZ47 213 398 A0QZ49 A0QZ54 76, 239, 344, 532 A0QZ83 63, 113, 136 A0QZ96 52, 56 A0QZE4 479 A0QZR5 29, 227 A0QZZ1 281 A0R012 55, 83, 212 A0R059 16, 32, 72

M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657 M. smegmatis 20094657;20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20094657 M. smegmatis 20094657;20631680 M. smegmatis 20094657 M. smegmatis 20094657 M. smegmatis 20094657;20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20094657;20631680 A0R061 23, 97 A0R067 57 A0R069 103, 221, 244, 255, 283 A0R072 24, 157, 208, 293, 303, 312, 352 A0R095 2 A0R0B2 61, 95, 106, 157, 170 A0R0E9 93 A0R0Q9 52, 464, 596 A0R0T8 21, 131, 216, 345 A0R0W7 278, 345 A0R170 12 A0R193 249, 316, 554, 749, 757 145, 203 A0R198 A0R199 33, 125, 235, 274, 324, 352, 469 A0R1G3 32, 48, 202 A0R1H2 10 A0R1H5 44, 425 A0R1H6 62, 103 A0R1Y8 35 A0R1Z6 81 A0R200 7, 466, 474 84, 384, 418, 490, 491, 499, 535, 539, 542, 546 A0R202 49, 50, 60, 66, 71, 77, 128, 211, 329 A0R203 A0R220 151, 308 88, 105, 375, 394 A0R221 A0R278 77 A0R2J4 64 A0R2T0 78, 149, 175, 312, 367, 368 A0R2U7 157 A0R2U8 171, 421, 465 A0R2V3 88 A0R2V4 257 A0R2V5 210, 250, 400 A0R2W9 71, 114, 284 A0R2X8 172, 327, 400, 427, 442 A0R2Y1 41 A0R3B8 119, 258, 398, 427 A0R3C8 29, 125, 187, 252 A0R3L1 447.451 A0R3L4 173, 492 A0R3M3 88, 206, 272, 281, 284, 291 A0R3M4 32, 138, 207, 380, 387 A0R3N8 228, 248, 308, 311, 384

M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20094657;20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20631680 *M. smegmatis* 20094657;20631680 M. smegmatis 20094657 M. smegmatis 20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657;20631680 M. smegmatis 20094657 M. smegmatis 20094657;20631680 M. smegmatis 20631680 M. smegmatis 20094657;20631680

A0R3V8 2 M. smegmatis 20631680 A0R3Y5 179, 235 M. smegmatis 20094657;20631680 A0R417 284, 332, 336 M. smegmatis 20094657;20631680 A0R452 111 M. smegmatis 20631680 A0R461 247, 250 M. smegmatis 20631680 A0R472 34 M. smegmatis 20094657;20631680 A0R478 73, 116, 179, 225, 246 M. smegmatis 20094657;20631680 A0R4B3 317.325 M. smegmatis 20631680 9,88 A0R4D0 M. smegmatis 20631680 A0R4G4 318 M. smegmatis 20094657;20631680 A0R4S6 103, 153, 251, 299, 340, 349 M. smegmatis 20094657 A0R574 47, 126, 209, 309, 360, 446, 516, 526, 530, 540, 613, 788 M. smegmatis 20631680 136, 158 A0R597 M. smegmatis 20631680 A0R5C5 117, 305 M. smegmatis 20094657;20631680 A0R5H1 24, 152, 209 M. smegmatis 20631680 A0R5L6 153 M. smegmatis 20631680 A0R5M3 82, 139 M. smegmatis 20094657 A0R5N7 99, 141, 235 M. smegmatis 20631680 A0R5P4 M. smegmatis 20094657 108, 315 A0R5Q2 187, 188, 473, 514, 573 M. smegmatis 20094657 A0R5R5 104, 298 M. smegmatis 20631680 A0R5X8 68 M. smegmatis 20094657 A0R609 417, 483, 524, 555 M. smegmatis 20631680 143, 270, 340, 561, 601 M. smegmatis 20094657;20631680 A0R618 A0R652 38, 200 M. smegmatis 20631680 A0R683 385 M. smegmatis 20094657 A0R6Q7 38, 200 M. smegmatis 20094657;20631680 A0R710 229 M. smegmatis 20094657 A0R716 175, 197, 285 M. smegmatis 20631680 A0R7G8 138 M. smegmatis 20631680 A0R719 32, 186, 214 M. smegmatis 20094657;20631680 A4ZHU4 359, 434, 651, 692, 697 M. smegmatis 20094657 O33246 M. tuberculosis 20631680 61 068447 9, 183, 334 M. smegmatis 20094657 P42829 56 M. smegmatis 20631680 Q9AFI5 84, 95, 119 M. smegmatis 20631680 Q9ZHC5 94, 116, 117, 127, 136, 145, 154, 163, 172, 181, 186, M. smegmatis 20094657 199, 200, 205 A0QP01 M. smegmatis 20631680 A0QQC1 M. smegmatis 20631680 A0QQX4 M. smegmatis 20094657;20631680 A0QRA5 M. smegmatis 20631680 M. smegmatis 20631680 A0QRA6

A0QS97	M. smegmatis 20631680
A0QSG6	M. smegmatis 20631680
A0QSZ1	M. smegmatis 20094657;20631680
A0QTD7	M. smegmatis 20631680
A0QTK2	M. smegmatis 20094657
A0QU45	M. smegmatis 20631680
A0QV09	M. smegmatis 20631680
A0QVL2	M. smegmatis 20631680
A0QWY3	M. smegmatis 20631680
A0QXZ4	M. smegmatis 20631680
A0QYW6	M. smegmatis 20094657;20631680
A0QZ34	M. smegmatis 20094657;20631680
A0QZ58	M. smegmatis 20631680
A0QZA2	M. smegmatis 20094657
A0R033	M. smegmatis 20094657
A0R090	M. smegmatis 20094657
A0R0A1	M. smegmatis 20631680
A0R0B0	M. smegmatis 20631680
A0R018	M. smegmatis 20631680
A0R0R1	M. smegmatis 20631680
A0R0S1	M. smegmatis 20631680
A0R1Z9	M. smegmatis 20631680
A0R2E9	M. smegmatis 20631680
A0R2V1	M. smegmatis 20631680
A0R343	M. smegmatis 20631680
A0R3E3	M. smegmatis 20631680
A0R4B7	M. smegmatis 20631680
A0R4H0	M. smegmatis 20631680
A0R4H2	M. smegmatis 20631680
A0R623	M. smegmatis 20631680
A0R729	M. smegmatis 20094657;20631680

Supplementary Table S3 – The top 15 most enriched biological processes, molecular functions and cellular components of the pupylated substrates in *M. smegmatis*, respectively. *a.* the number of proteins annotated; *b.* the proportion of proteins annotated; *c.* E-ratio, enrichment ratio, the pupylation proportion in relation to the proteomic proportion.

Description of GO term		Pupylation		Proteome		Dyalwa
		Per. ^b	Num.	Per.	E-ratio	P-value
The top 15 most enriched biological processes						
Translation (GO:0006412)	31	11.61%	101	2.26%	5.14	4.84E-15
Cellular amino acid biosynthetic process (GO:0008652)	20	7.49%	63	1.41%	5.31	2.19E-10
Branched chain family amino acid biosynthetic process	8	3.00%	12	0.27%	11.16	5.88E-08
(GO:0009082)						
Tricarboxylic acid cycle (GO:0006099)	9	3.37%	18	0.40%	8.37	2.56E-07
Glycolysis (GO:0006096)	8	3.00%	16	0.36%	8.37	1.24E-06
Response to stress (GO:0006950)	11	4.12%	36	0.81%	5.12	4.43E-06
Protein folding (GO:0006457)	7	2.62%	16	0.36%	7.32	1.80E-05
Sulfate transport (GO:0008272)	4	1.50%	7	0.16%	9.57	3.77E-04
Cellular amino acid metabolic process (GO:0006520)	6	2.25%	18	0.40%	5.58	4.33E-04
Threonine biosynthetic process (GO:0009088)	3	1.12%	4	0.09%	12.56	8.06E-04
ATP synthesis coupled proton transport (GO:0015986)	4	1.50%	9	0.20%	7.44	1.23E-03
Proteasomal protein catabolic process (GO:0010498)	3	1.12%	5	0.11%	10.04	1.93E-03
One-carbon metabolic process (GO:0006730)	3	1.12%	5	0.11%	10.04	1.93E-03
Lipid biosynthetic process (GO:0008610)	5	1.87%	17	0.38%	4.92	2.50E-03
Proton transport (GO:0015992)	4	1.50%	11	0.25%	6.09	2.94E-03
The top 15 most enriched molecular functions						
Structural constituent of ribosome (GO:0003735)	26	9.74%	58	1.30%	7.50	1.84E-17
RRNA binding (GO:0019843)	20	7.49%	37	0.83%	9.05	1.06E-15
RNA binding (GO:0003723)	24	8.99%	78	1.75%	5.15	6.65E-12
Lyase activity (GO:0016829)	24	8.99%	153	3.42%	2.63	9.23E-06
Hydrogen ion transporting ATP synthase activity, rotational	4	1.50%	7	0.16%	9.57	3.77E-04
mechanism (GO:0046933)						
TRNA binding (GO:0000049)	5	1.87%	12	0.27%	6.98	4.10E-04
Pyridoxal phosphate binding (GO:0030170)	12	4.49%	69	1.54%	2.91	6.63E-04
Proton-transporting ATPase activity, rotational mechanism	3	1.12%	4	0.09%	12.56	8.06E-04
(GO:0046961)						
Acyltransferase activity (GO:0008415)	12	4.49%	73	1.63%	2.75	1.12E-03
Oxidoreductase activity, acting on the aldehyde or oxo group	3	1.12%	5	0.11%	10.04	1.93E-03
of donors, NAD or NADP as acceptor (GO:0016620)						
Threonine-type endopeptidase activity (GO:0004298)	2	0.75%	2	0.04%	16.74	3.56E-03
Succinate-CoA ligase (ADP-forming) activity (GO:0004775)	2	0.75%	2	0.04%	16.74	3.56E-03

NAD or NADH binding (GO:0051287)	7	2.62%	36	0.81%	3.26	4.68E-03
Thiosulfate sulfurtransferase activity (GO:0004792)	2	0.75%	3	0.07%	11.16	1.02E-02
Oxidoreductase activity, acting on the CH-NH2 group of	2	0.75%	3	0.07%	11.16	1.02E-02
donors, NAD or NADP as acceptor (GO:0016639)						
The top 15 most enriched cellular components						
Ribosome (GO:0005840)	26	9.74%	59	1.32%	7.38	3.12E-17
Ribonucleoprotein complex (GO:0030529)	25	9.36%	58	1.30%	7.22	2.51E-16
Cytoplasm (GO:0005737)	49	18.35%	268	6.00%	3.06	2.84E-13
Small ribosomal subunit (GO:0015935)	6	2.25%	8	0.18%	12.56	1.09E-06
Proton-transporting ATP synthase complex, catalytic core	4	1.50%	5	0.11%	13.39	5.94E-05
F(1) (GO:0045261)						
Proteasome complex (GO:0000502)	3	1.12%	3	0.07%	16.74	2.11E-04
Intracellular (GO:0005622)	31	11.61%	282	6.31%	1.84	5.61E-04
Proton-transporting two-sector ATPase complex, catalytic	2	0.75%	2	0.04%	16.74	3.56E-03
domain (GO:0033178)						
Proton-transporting two-sector ATPase complex	2	0.75%	2	0.04%	16.74	3.56E-03
(GO:0016469)						
Proteasome core complex (GO:0005839)	2	0.75%	2	0.04%	16.74	3.56E-03
Large ribosomal subunit (GO:0015934)	3	1.12%	7	0.16%	7.17	6.16E-03
Peroxisome (GO:0005777)	1	0.37%	1	0.02%	16.74	5.97E-02
Tricarboxylic acid cycle enzyme complex (GO:0045239)	1	0.37%	1	0.02%	16.74	5.97E-02
Proteasome core complex, alpha-subunit complex	1	0.37%	1	0.02%	16.74	5.97E-02
(GO:0019773)						
Protein complex (GO:0043234)	1	0.37%	1	0.02%	16.74	5.97E-02

Supplementary Table S4 – The differences among various versions of GPS series algorithms. First, the scoring strategy was reserved in any release of GPS algorithms. For performance improvement, the Markov Cluster Algorithm (MCL for short) was adopted in GPS 1.0 & 1.10 to classify known phosphorylation sites into several clusters.⁶⁻⁷ This method was not used in later versions for its low efficiency. In the latest 3.0 version, the *k*-means clustering was adopted to cluster known PTM sites if the data set is large.³⁻⁴ However, due to the data limitation, this approach was not included in this study, while the GPS 2.2 algorithm contains a sequential three-step procedure of MLS, WT and MaM for performance improvement.

Algorithm	Performance improvement	Ref.
GPS 1.0 & 1.10	MCL	6-7
GPS 2.0	MaM	2
GPS 2.1	MLS & MaM	5
GPS 2.2	MLS, WT & MaM	In this study
GPS 3.0	k-means clustering, MLS, WT & MaM	3-4