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Abstract

Protein methylation is an essential posttranslational modification (PTM) mostly occurs at lysine and arginine residues, and
regulates a variety of cellular processes. Owing to the rapid progresses in the large-scale identification of methylation sites,
the available data set was dramatically expanded, and more attention has been paid on the identification of specific methy-
lation types of modification residues. Here, we briefly summarized the current progresses in computational prediction of
methylation sites, which provided an accurate, rapid and efficient approach in contrast with labor-intensive experiments.
We collected 5421 methyllysines and methylarginines in 2592 proteins from the literature, and classified most of the sites
into different types. Data analyses demonstrated that different types of methylated proteins were preferentially involved in
different biological processes and pathways, whereas a unique sequence preference was observed for each type of methyla-
tion sites. Thus, we developed a predictor of GPS-MSP, which can predict mono-, di- and tri-methylation types for specific
lysines, and mono-, symmetric di- and asymmetrical di-methylation types for specific arginines. We critically evaluated the
performance of GPS-MSP, and compared it with other existing tools. The satisfying results exhibited that the classification
of methylation sites into different types for training can considerably improve the prediction accuracy. Taken together, we
anticipate that our study provides a new lead for future computational analysis of protein methylation, and the prediction
of methylation types of covalently modified lysine and arginine residues can generate more useful information for further
experimental manipulation.
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Introduction

Protein methylation is one of the most important reversible
posttranslational modifications (PTMs) [1–4]. Although it has
been more than half a century since the discovery of lysine
methylation [4], protein methylation attracts less attention
than other PTMs such as phosphorylation, ubiquitination and
acetylation. Difficulties in the development of new experimen-
tal techniques and reagents greatly hampered the research pro-
gress in the identification of protein methylation during the
past years [5]. However, as a key regulatory mechanism, protein
methylation is involved in a broad spectrum of biological and
physiological processes, such as transcriptional and epigenetic
regulation, cell metabolism and the development of human dis-
eases [1, 6–9]. Protein methylation can occur on several types of
amino acid residues, such as lysine (K), arginine (R), proline (P),
histidine (H), alanine (A) and asparagine (N) in the form of N-
methylation [2, 10, 11]. Furthermore, O-methylation of glutamic
acids (E) and S-methylation of cysteine (C) and methionine (M)
residues were also reported [12, 13]. Currently, most studies
have been focused on N-methylations of lysine and arginine
residues because the two PTMs are predominant types of pro-
tein methylation, with particularly importance [1, 14].

Lysine methylation was classified into three types, including
mono-, di- and tri-methylation according to the numbers of
hydrogen atoms on amino group substituted by methyl groups,
while arginine methylation was also classified into three types,
such as mono-, symmetric di- and asymmetrical di-methylation
[1]. For methyllysines, all substitutions occur on the e-N atom
under the catalysis of protein lysine methyltransferases
(PKMTs), while S-adenosyl-L-methionine provides methyl
group, receives hydrogen atom and turns into S-adenosyl-L-
homocysteine [1]. The substitutions can occur one, two or three
times which result in mono-, di- or tri-methylation, respect-
ively. In contrast, specific arginine residues can be mono- or di-
methylated by protein arginine methyltransferases (PRMTs) [1].
Because there are two guanidino groups in an arginine residue,
double substitutions of methyl groups can occur either on a sin-
gle guanidino group or both guanidino groups, resulting in
asymmetrical or symmetric di-methylation, respectively [1].

Different PKMTs or PRMTs catalyze different types of protein
methylations [1, 15–17]. For example, PRMTs were classified
into type I or type II families according to whether they carry
out asymmetrical or symmetric di-methylation of arginine resi-
dues [1]. G9A, also called as EHMT2, is a H3K9 PKMT that cata-
lyzes both mono- and di-methylation of H3K9 (H3K9me1 and
H3K9me2) in euchromatin, whereas the G9A-dependent
H3K9me1 actives the serine-glycine biosynthetic pathway and
prompts cancer cell proliferation [15, 16]. In addition, EZH2 spe-
cifically performs the tri-methylation of H3K27 (H3K27me3),
and mediates in ataxia-telangiectasia (A-T) neurodegeneration
[17]. Also, different types of protein methylations are associated
with distinct biological functions [6, 18–20]. For example, the
mono-methylation of H3 lysine 56 (H3K56me1) catalyzed by
G9a/KMT1C provides a docking site for the interaction with pro-
liferating cell nuclear antigen (PCNA), to regulate DNA replica-
tion in mammals [6]. Previously, it was demonstrated that the
N-terminus of trithorax group (trxG) protein binds and actives
promoter regions tri-methylated on H3K4 (H3K4me3), while the
majority of polycomb group (PcG) recruiter binding sites, but not
its binding sites, are associated with H3K4me3 [18]. The recruit-
ment of PcG or trxG proteins to inactive or active promoter re-
gions counteractively determines the gene expression profiles
during the embryonic development [18]. In glioblastoma, the

tumor suppressor gene ST7 was found to be silenced by PRMT5,
which catalyzes symmetric di-methylation of arginine residues
on histone tails [20].

In contrast to labor-intensive and expensive experiments, ac-
curately computational prediction of methylation sites in pro-
teins has also emerged to be an alternative approach [5, 21–24].
Here we first introduced and summarized the current progresses
in computational prediction of general protein methylation sites.
Also, we collected and integrated 1521 methyllysines and 3900
methylarginines from the scientific literature. We further classi-
fied these methylation sites into different types based on the ex-
perimental evidence. From the data set, we observed that
different types of methylated proteins prefer to participate in dif-
ferent biological processes and pathways, while distinct se-
quences preferences were observed around different type of
methylation sites. Thus, we proposed the prediction of specific
methylation types for modified residues might be more helpful
against a general prediction. A previously developed algorithm,
Group-based Prediction System (GPS) [25], was adopted and con-
siderably improved for the training and prediction, whereas the
robustness and accuracy were also carefully evaluated. Then we
developed a computational tool of GPS-MSP (Methyl-group
Specific Predictor) for the prediction of general protein methyla-
tion sites and methylation types of methyllysines and methylar-
ginines. By comparison, GPS-MSP exhibited a competitive
performance to other existing tools for the prediction of general
methylation sites, while the classification of methylation sites
into different types for training can further improve the accura-
cies. Taken together, we proposed that GPS-MSP can be a highly
useful tool for the computational analysis of protein methylation.
The online service and local packages of GPS-MSP can be freely
accessed for academic research at http://msp.biocuckoo.org/.

Methods
Data collection and preparation

First, we searched the PubMed with multiple key terms such as
‘protein methylation’, ‘lysine methylation’ and ‘arginine methy-
lation’. The related articles were carefully read by eyes and ex-
perimentally identified lysine or arginine methylation sites
were manually curated. As previously described [25], we
removed redundant or homologous sites to avoid the overesti-
mation of the prediction accuracy. The CD-HIT (32) with a
threshold of 40% sequence identity was used to single out hom-
ologous proteins. If two proteins were found to be methylated
at the same position and to have >40% sequence identity, only
one of the two proteins was preserved. Totally, the non-
redundant data set contained 1521 methyllysines in 962 pro-
teins, and 3900 methylarginines in 1751 proteins. In our data
set, there were 947 methyllysines and 3843 methylarginines
identified with the methylation type information. All methy-
lated proteins were mapped to the primary sequences (PSs)
downloaded from the UniProt databases [26], while the methy-
lation sites were exactly pinpointed. We did not limit our search
to any specific organism, and a detailed statistics of numbers of
methylated proteins and sites was shown for each species
(Supplementary Table S1).

For the general prediction of methyllysines (K.all) and meth-
ylarginines (R.all) in proteins, we adopted a previously pub-
lished approach to prepare the training data sets [25]. As
previously described [27], the experimentally identified lysine
or arginine methylation sites were regarded as positive data (þ),
while all the other non-methylated lysine or arginine residues
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in the same proteins were taken as negative data (�). Totally,
the non-redundant lysine methylation data set used for training
contained 1521 positive sites and 47 972 negative sites, while
the training data set of arginine methylation had 3900 positive
sites and 86 111 negative sites (Table 1). In this work, we
also predicted methylation types of methyllysines and
methylarginines. Here, we denoted the data sets of mono-, di-
and tri-methylated lysine residues as K.mono, K.di and K.tri,
and mono-, symmetric di- and asymmetrical di-methylated ar-
ginine residues as R.mono, R.s.di and R.a.di, respectively.
Because a considerable number of methylarginines were only
identified with di-methylation information, we additionally
denoted the data set of all di-methylation of arginine sites as
R.di. The corresponding statistics was shown in Table 1. The
data set of known methylated substrates, together with UniProt

accession numbers, protein sequences, methylated positions,
methylation types, organisms and PMIDs of original references,
can be downloaded at http://msp.biocuckoo.org/download.php.

Performance evaluation

As previously described [27], the four measurements of sensitiv-
ity (Sn), specificity (Sp), precision (Pr) and Mathew Correlation
Coefficient (MCC) were adopted to evaluate the prediction per-
formance. The four measurements were defined as shown
below:

Sn ¼ TP
TPþ FN

; Sp ¼ TN
TNþ FP

; Pr ¼ TP
TPþ FP

and

MCC ¼ TP� TNð Þ FN� FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � TNþ FPð Þ � TPþ FPð Þ � TNþ FNð Þ

p :

The leave-one-out (LOO) validation and 4-, 6-, 8- and 10-fold
cross-validations were performed. The Receiver Operating
Characteristic (ROC) curves and AROC (area under ROC) values
were also carried out.

Algorithm

During the past decade, we developed a series of GPS algorithms
for the prediction of PTMs sites in proteins. In this work, we
applied the previously released GPS 3.0 algorithm with a

significant improvement [25]. The algorithm comprised two
parts, including the scoring strategy and performance
improvement.

The basic hypothesis of the scoring strategy is that similarly
short peptides exhibit similar biochemical properties with simi-
lar functions. Thus, we defined a methylation site peptide MSP(m,
n) as a methyllysine/methylarginine amino acid flanked by m
residues upstream and n residues downstream. Then we used
the amino acid substitution matrix BLOSUM62 to estimate the
similarity between two MSP(m, n) peptides A and B as:

S A;Bð Þ ¼
X

�m� i�n

Score A i½ �;B i½ �ð Þ

Score(A[i], B[i]) denotes the substitution score of the two amino
acids of A[i] and B[i] in the BLOSUM62 at the position i. If S(A,
B)< 0, we redefined it as S(A, B)¼ 0. A given MSP(m, n) is then
compared with each of the experimentally identified methylly-
sine/methylarginine peptides in a pairwise manner to calculate
the similarity score. The average value of the substitution
scores is taken as the final score.

The performance improvement procedure comprises four
distinct steps, including k-means clustering, motif length selec-
tion, weight training and matrix mutation.

(i) k-means clustering: Given two MSP(m, n) peptides A and B,
the similarity was defined and measured as s(A, B) ¼ Ns/N. The
N is the number of all substitutions, whereas the Ns is the num-
ber of conserved substitutions with Score(a, b)> 0 in the
BLOSUM62 matrix. The s(A, B) ranges from 0 � 1. Thus, the dis-
tance between them can be defined as D(A, B) ¼ 1/s(A, B), if s(A,
B) ¼ 0, D(A, B) ¼ 1. By exhaustively testing, we determined the
cluster number with the best LOO result for each data set, while
MSP(7, 7) was adopted. First, N methylation sites from the
positive data (þ) were randomly chosen as the centroids, while
N (N ¼ 5 in this work) is number of clusters. Second, the other
positive sites were compared in a pairwise manner with the five
centroids and clustered into groups with the highest similarity
values. Third, the centroid of each cluster was updated with the
highest average similarity (HAS). The second and third steps
were iteratively repeated until the clusters did not change any
longer. After the five clusters for the positive sites had been
determined, we put each negative site into the cluster with the
HAS.

(ii) Motif length selection: In this step, the optimal combination
of MSP(m, n) was determined based on the highest LOO result.

Table 1. The LOO results of GPS-MSP

Type Positivea Negativeb High Medium Low

Pr (%) Sn (%) Sp (%) Pr (%) Sn (%) Sp (%) Pr (%) Sn (%) Sp (%)

K.all 1521 47 972 43 23.58 99.01 20.75 41.05 95.04 12.46 44.51 90.1
K.mono 592 14 416 56.97 30.21 99.04 24.95 39.24 95.01 16.52 46.63 90.05
K.di 316 6532 63.58 29.36 99.16 28.31 38.53 95.12 19.91 42.2 91.5
K.tri 268 4396 73.75 42.14 99.04 48.94 74.29 95.06 33.39 76.43 90.29
R.all 3900 86 111 46.09 18.89 99 30.21 47.78 95.01 22.28 63.31 90.01
R.mono 3318 83 095 37.37 14.96 99.01 25.82 45.5 95.01 18.67 58.14 90
R.s.di 72 1071 74.36 40.85 99.07 50 74.65 95.05 33.97 75.35 90.29
R.a.di 1300 29 325 41.33 15.78 99.01 28.99 45.96 95.01 22.12 63.97 90.03
R.di 1847 39 901 43.08 16.38 99 28.69 43.49 95.01 20.38 55.04 90.06

Note. Three thresholds including high, medium and low stringency were established based on the Sp values of �99%, �95 and �90%, respectively.
aPositive the number of positive sites
bNegative the number of negative sites.
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The Sp value was fixed at 95% for each data set, while the com-
binations of MSP(m, n) (m¼ 1, . . ., 15; n¼ 1, . . ., 15) were exhaust-
ively tested.

(iii) Weight training: The substitution score between two
MSP(m, n) peptides A and B was refined as:

S0 A;Bð Þ ¼
X

�m� i�n

wiScore A i½ �;B i½ �ð Þ

Initially, the weight of each position in MSP(m, n) was taken
as 1. The wi value is the weight of position i. Again, if S0(A, B)< 0,
we redefined it as S0(A, B) ¼ 0. Then we randomly picked out
the weight of any position forþ1 or �1 and re-computed the
LOO result. The Sp value was fixed at 95%. The manipulation
was adopted when the Sn value was increased. This process
was continued until the Sn value was not increased any longer.

(iv) Matrix mutation: The aim of this step is to generate an op-
timal or near-optimal scoring matrix. BLOSUM62 was chosen as
the initial matrix, and the LOO performance was calculated.
Again, we fixed the Sp value at 95% for each data set, to improve
the Sn though randomly picking out an element of the

BLOSUM62 matrix forþ1 or �1. This process was repeated until
convergence was reached.

Because the original training process is too time-consuming,
here we employed the simulated annealing (SA) algorithm to
optimize the parameters for the steps of Weight Training and
Matrix Mutation [28]. Such a procedure greatly improved the ef-
ficiency for training.

Statistical analysis

To analyze the functional distribution of human protein methy-
lation, we downloaded Gene Ontology (GO) (version 125,
released on 18 September 2013) [29] annotation files from the
EBI Web site (http://www.ebi.ac.uk/GOA). There were 45 530
human proteins annotated with at least one GO term, including
531 lysine-methylated proteins and 750 arginine-methylated
proteins. Here we defined the following:

N ¼ number of proteins in human proteome annotated by at least

one GO term.
n ¼ number of proteins in human proteome annotated by the GO

term t.
M ¼ number of proteins in human methylated proteins annotated

by at least one GO term.
m ¼ number of proteins in human methylated proteins annotated

by the GO term t.

Then the enrichment ratio (E-ratio) of the GO term t was cal-
culated, and the p-value was calculated with the hypergeomet-
ric distribution [25] as below:

E ratio ¼
m
M
n
N

p� value ¼
Xn

m’¼m

M

m’

 !
N�M

n�m’

 !

N

n

 ! ðEnrichment ratio � 1Þor

p� value ¼
Xm
m’¼0

M

m’

 !
N�M

n�m’

 !

N

n

 ! ðEnrichment ratio < 1Þ

In this work, we only considered the over-represented GO
groups with E-ratio� 1. Furthermore, we purchased a KEGG
(Kyoto Encyclopedia of Genes and Genomes) FTP subscription
for personal use [30], and mapped all human UniProt proteins to
KEGG pathways if available. Totally, there were 6195 human
proteins annotated with at least one KEGG entry, including 147
lysine and 236 arginine methylated proteins respectively.
Analogously, we also performed similar analyses to identify
statistically over-represented KEGG pathways that were associ-
ated with protein methylation.

The implementation of the web service and local
packages

For a convenient usage, we constructed the online service in an
easy-to-use manner, with a user-friendly interface using PHP
and JavaScript. Also, IUPred [31] and NetSurfP [32] were inte-
grated into the web service to predicted potential protein struc-
tural features, such as disorder regions, secondary structures
(SSs) and surface accessibilities. Such predictions will be helpful
for further experimental consideration. The Web site of GPS-
MSP was extensively tested on various web browsers including
Internet Explorer, Mozilla Firefox and Google Chrome to provide
a robust service. In addition, for the prediction of large sequence
data sets, the stand-alone packages were implemented in JAVA
and supported for three major operation systems including
Windows, Linux and Mac OS. For convenience, the online ser-
vice and local packages of GPS-MSP were implemented in JAVA
and freely available at http://msp.biocuckoo.org/.

Results
Current progresses in the prediction of protein
methylation sites

Previously, most studies were mainly focused on histone
methylations. However, owing to recent advances in the devel-
opment of high-throughput techniques, such as the immunoaf-
finity enrichment of methylated peptides and the large-scale
identification of methylation sites using mass spectrom-
etry, more and more attention has been taken to the methyla-
tion of non-histone proteins [3, 14, 33]. Besides experimental
approaches, a number of computational tools were developed
for identifying potential methylation sites in proteins, and the
predictions can greatly narrow down potential candidates for
further experimental consideration [5, 21–24] Table 2.

In 2006, we collected 227 methyllysines and 273 methylargi-
nines from the literature, and constructed a non-redundant
positive data set (þ) containing 156 lysine and 250 arginine
methylation sites, by clearing the redundant sites which gener-
ated bias for the prediction accuracy [5] (Table 2). The negative
data sets (�) were prepared as non-methylated lysine or argin-
ine sites taken from the same methylated proteins. The PS fea-
tures of amino acid compositions and frequencies around
methylation sites were considered, and then we constructed
the first web server of MeMo for predicting protein methylation
sites [5]. Using MeMo, we predicted potential arginine methyla-
tion sites for three known methylated proteins, and the predic-
tions were highly consistent with experimental evidence [5].
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Later, two predictors of BPB-PPMS [21] and MASA [22] were re-
ported. For training the computational models, BPB-PPMS
mainly used the PS features [21], while MASA further included
the features of solvent-accessible surface area (ASA) and SS
around the methylation sites [22]. Owing to the data limitation,
the homologous or redundant methylation sites across different
proteins were not cleared [21, 22] (Table 2). Both MeMo and BPB-
PPMS can only predict methyllysines and methylarginines [5,
21], whereas MASA can predict potential methylation states for
K, R, E and N residues [22] (Table 2). Recently, Shi et al. [23] inte-
grated 546 lysine methylation sites and developed PLMLA spe-
cifically for predicting of methyllysines. Besides PS features,
they also considered the SS features and physicochemical prop-
erties (PPs) of amino acids, such as hydrophobicity and charge
[23] (Table 2). Later, they prepared a non-redundant data set
containing 322 methyllysines and 355 methylarginines, and fur-
ther included more features, including ASA and normalized van
der Waals volume (VDWV) of 20 types of amino acids. The
VDWV is also a PP feature. Then based on the features of PS,
ASA, SS and PP, a highly useful tool of PMeS were constructed
[24] (Table 2). Interestingly, all above-mentioned tools adopted
the algorithm of Support Vector Machines for training the com-
putational models [5, 21–24].

By summarizing all available tools for the prediction of
methylation sites, we observed that including more features
considerably but not dramatically increased the accuracy
against the PS-based prediction [5, 21–24]. Also, because more
features were considered, both the training and predicting proc-
esses are complicated and time-consuming. In this regard, we
developed GPS-MSP by merely using PS features to balance the
training time and prediction performance.

The functional distribution of different types of
methylated proteins

Previously, experimental studies demonstrated that different
types of protein methylations are differentially associated with
distinct biological processes [6, 18–20]. However, a systematic
analysis of the functional distribution of known methylated
proteins remained to be performed to evaluate the correctness
of experimental observations. In our data set, there were 962 ly-
sine methylated proteins including 350 K.mono, 196 K-di and
173 K.tri substrates, and 1751 arginine methylated substrates
including 1624 R.mono, 38 R.s.di and 560 R.a.di proteins. Using
the data sets, we first performed an enrichment analysis of GO
terms with the hypergeometric test (Figure 1, Supplementary
Table S2, P < 0.05). For each type of methylated proteins, the

top five most significantly over-represented biological proc-
esses, molecular functions and cellular components were
shown (Figure 1). For lysine methylation, we observed that dif-
ferent types of methylated proteins are significantly associated
with different GO terms. For example, K.mono but not K.di and
K.tri proteins are statistically enriched in gene expression
(GO:0010467) and RNA splicing (GO:0000398, GO:0008380),
whereas the GO term of defense response to bacterium
(GO:0042742) was only over-represented in K.di proteins (Figure
1A). Again, the GO term of adenine transport (GO:0015853) was
only significantly associated with K.tri but not K.mono or K.di
proteins. From the results, only two GO terms, including nucleo-
some assembly (GO:0006334) and nucleosome (GO:0000786),
were significantly over-represented in all three types of lysine
methylated proteins (Figure 1A). For arginine methylation, we
got a similar result and different arginine methylated proteins
also preferentially participated in distinct biological pathways.
For example, both R.mono and R.a.di but not R.s.di proteins are
statistically associated with gene expression (GO:0010467),
whereas R.s.di proteins are significantly enriched with GO terms
of viral process (GO:0016032), DSB repair (GO:0006302) and base-
excision repair (GO:0006284) (Figure 1B).

Furthermore, we performed an additional enrichment ana-
lysis of KEGG pathways for different types of lysine (Figure 2A)
and arginine methylated proteins (Figure 2B), while the detailed
results were shown in Supplementary Table S3. The statistical
analysis of R.s.di proteins was not performed, owing to the data
limitation. Again, the results suggested that different types of
methylated proteins play a different role in distinct pathways.
Interestingly, we observed that K.mono, K.di and K.tri proteins
are significantly associated with systemic lupus erythematosus
(SLE, KEGG ID: hsa05322), a systemic autoimmune disease
occurred after environmental triggering of genetically suscep-
tible individuals [34]. Previous experiments demonstrated that
H3K9me3 and H3K27me3 are highly associated with SLE [35, 36],
whereas our results proposed a potentially more general mech-
anism that non-histone protein methylation might also partici-
pate in SLE.

Motif-based analysis of sequence preferences around
different types of methylation sites

Protein lysine and arginine methylations are catalyzed by a var-
iety of PKMTs and PRMTs, respectively [1, 15–17]. Thus, the
unique sequence and 3D structure of a PKMT or PRMT will
determine the recognition specificity of substrates. Because
different types of methylated proteins prefer to be involved in

Table 2. A summary of currently available tools for predicting protein methylation sites

Predictor Typea Featureb Training datac

Positive Negative

MeMo [5] K/R PS K (156); R (250)
BPB-PPMS [21] K/R PS K (188); R (216) K (2157); R (1980)
MASA [22] K/R/E/N PS, ASA, SS K (460); R (303); E (45); N (22) K (6237); R (1216); E (885); N (375)
PLMLA [23] K PS, SS, PP K (546) K (2842)
PMeS [24] K/R PS, ASA, SS, PP K (322); R (355) K (4126); R (3960)
GPS-MSP K/R PS K (1,521); R (3,900) K (47,972); R (86,111)

Note. PS ¼ primary sequence; ASA ¼ solvent-accessible surface area; SS ¼ secondary structure; PP ¼, ysicochemical property.
aThe type of predictable methylation residue
bThe features used for the prediction.
cFor each predictor, the number of positive or negative sites in the training data set is shown in brackets.
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Figure 1. The functional distribution of different types of (A) lysine and (B) arginine methylated proteins, respectively. Three classes of GO terms including biological

processes, molecular functions and cellular components were adopted, while the statistical enrichment analysis of GO terms for methylated proteins were performed

with the hypergeometric distribution [25]. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Figure 2. The enrichment analysis of KEGG pathways for different types of (A) lysine and (B) arginine methylated proteins, respectively. The analysis of R.s.di was not

performed owing to the data limitation. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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distinct biological processes and pathways, here we speculated
that there are potentially different sequence preferences
around different types of methylation sites. To address this con-
cern, we used pLogo [37], a highly useful tool to visualize sequence
logos, to analyze the amino acid occurrence around methyllysines
(Figure 3A) and methylarginines (Figure 3B), respectively.

Generally, the sequence preferences of lysine methylations
are significantly different from arginine methylations (Figure 3).
For all three types of methylarginines, there is a much inform-
ative and over-represented glycine/G residue at �1 position
(Figure 3B). However, different types of arginine methylations
still follow distinct sequence patterns. For example, the G resi-
dues are significantly enriched in all positions of the flanking
region of R.mono, whereas a proline/P atþ1 and an L at �3 pos-
itions are also over-represented for R.a.di (Figure 3B). However,
the R residues prefer to occur at positions ofþ4,þ2, �2 and �4
of R.s.di sites, which follow an RG repeat, and the result was
consistent with experimental observations [38]. In contrast with
methylarginines, the sequence profiles of lysine methylations
are more complicated. For example, in position ofþ1, the L resi-
due was mostly significant for K.mono, while the R and trypto-
phan/W residues were mostly enriched for K.di and K.tri,
respectively (Figure 3A). Taken together, our results demon-
strated that different types of methylation sites preferentially
follow distinct sequence profiles.

Development of GPS-MSP for the prediction
of methylation types of methyllysines and
methylarginines

In this work, besides the general prediction of lysine and arginine
methylation sites, GPS-MSP can also predict methylation types of
covalently modified lysine and arginine residues. From the scien-
tific literature, we totally collected 1521 methyllysines and 3900
methylarginines. We classified these sites based on their identified
methylation types into seven sub-types, including K.mono, K.di,
K.tri, R.mono, R.s.di, R.a.di and R.di (Table 1). Based on a previously
developed algorithm of GPS 3.0 [25], we further adopted the SA al-
gorithm to rapidly determine the optimal parameters of the com-
putational model for each data set. As the first tool to predict
methylation type-specific sites for lysine and arginine residues,
GPS-MSP was developed in an easy-to-use manner, while both on-
line service and stand-alone packages were provided.

For the usage of GPS-MSP web server, here we used the pro-
tein sequence of human p53 as an example (Supplementary
Figure S1). The input of the web service contained three parts,
including the methylation types, the protein sequences and the
thresholds (Supplementary Figure S1A). The methylation types
can be selected by clicking the checkboxes, while four threshold
options including ‘High’, ‘Medium’ and ‘Low’ and ‘All’ were pro-
vided in the lower panel. The ‘High’, ‘Medium’ and ‘Low’ options

Figure 3. The amino acid frequencies of different types of (A) methyllysines and (B) methylarginines were analyzed and visualized by pLogo [37]. A colour version of

this figure is available at BIB online: https://academic.oup.com/bib.

Prediction of type-specific methylation sites | 653

Downloaded from https://academic.oup.com/bib/article-abstract/18/4/647/2562758
by Huazhong University of Science and Technology, Yu Xue
on 06 November 2017

http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw041/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw041/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw041/-/DC1
https://academic.oup.com/bib


were selected with Sp values of �99%, �95 and 90%, respect-
ively. The ‘‘All’ option will provide all the predicted results, with
no stringency. One or multiple protein sequences could be input
by the direct ‘copy and paste’ or upload of a sequence file in
FASTA format. Furthermore, if the annotations of SS and sur-
face accessibility for the inputted protein are needed, user could
transfer to ‘comprehensive’ mode by clicking the ‘here�’ link.
To ensure the stability of webserver, the input of protein se-
quences was limited with< 2M, while the large-scale computa-
tion could be performed through installing the stand-alone
software packages locally.

After starting the prediction, the Web site will be redirected
to a waiting page and then transferred to the result page
(Supplementary Figure S1B). The results of p53 contained four
sequential parts, including the list of 18 predicted methylation
sites with the type information, the potential annotations of
surface accessibilities and disorder regions, predicted SSs and
the summarization of the results. All the results could be down-
loaded through clicking the ‘Download Zip’ button. To avoid the
potential long waiting, if users submit multiple protein se-
quences, the prediction will be performed one by one and the

prediction of next protein could be triggered by clicking the
‘Next protein�’ link. Alternatively, users can download local
packages for a more convenient and rapid prediction
(Supplementary Figure S1C).

Performance evaluation and a comparison with
other existing tools

To evaluate the robustness and accuracy of GPS-MSP, both of
the LOO validation and 4-, 6-, 8- and 10-fold cross-validations
were performed on each data set (Figure 4). For methyllysine
prediction, the AROC values of LOO results are 0.697, 0.748,
0.686 and 0.870 for K.all, K.mono, K.di and K.tri, respectively
(Figure 4). For the prediction of methylarginines, the AROC re-
sults of LOO validations are 0.848, 0.806, 0.848, 0.859 and 0.772
for R.all, R.mono, R.s.di, R.a.di and R.di, respectively (Figure 4).
The detailed results under the high, medium and low cutoff val-
ues were shown in Table 1. From the results, we also observed
that the prediction of methylation types of methyllysines and
methylarginines considerably increased the accuracy against
the general predictions (Figure 4). In addition, the results of 4-,

Figure 4. The LOO validation and 4-, 6-, 8-, 10-fold cross-validations were performed for all types of protein methylations, including K.all, K.mono, K.di, K.tri, R.all,

R.mono, R.s.di, R.a.di and R.di. The AROC values were calculated. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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6-, 8- and 10-fold cross-validations are highly similar with the
LOO validations. Thus, GPS-MSP is a stable and robust predictor
with a satisfying performance.

To further exhibit the superiority of our method, here we
compared the performance of GPS-MSP with other existing
tools, including BPB-PPMS [21], MASA [22] and PMeS [24].
Because these tools can only predict general methylation sites
in proteins, we directly submitted the training data sets of K.all
and R.all for the prediction, while the LOO results of GPS-MSP
were used for a comparison (Figure 5). For the general prediction
of methyllysines, only the performance of PMeS but not BPB-
PPMS and MASA was slightly higher than the LOO result of GPS-
MSP (Figure 5A). In contrast, GPS-MSP was much better than
other tools on methylarginine predictions (Figure 5B). The
promising performance of GPS-MSP might be owing to either
better methodology or the larger data set for training. Thus, we
compared GPS-MSP with an existing tool of Musite [39–41],
using the same data set for an unbiased comparison. Originally,
Musite was reported as a PS-based tool mainly for the prediction
of general and kinase-specific phosphorylation sites [39–41].
Recently, the new version of Musite further integrated more fea-
tures such as SS properties, and can train predictive models
from customized data sets (Unpublished, personal communica-
tions). The training data set of GPS-MSP was used for training
models of Musite. Because the training procedure of Musite was
quite time-consuming, here we only performed the self-

consistency validations to compare GPS-MSP and Musite for the
prediction of methyllysines (Figure 5C) and methylarginines
(Figure 5D), respectively. It was shown that the Musite algo-
rithm was slightly better than GPS-MSP, as GPS-MSP only used
PS features. Taken together, our results demonstrated that the
accuracy of GPS-MSP can be better or at least comparative with
previously reported predictors, whereas the methylation type-
specific predictions can considerably improve the performance.

Discussion

The past decade has witnessed a rapid progress in the identifica-
tion of protein methylation. In 2006, we only obtained 500 lysine
and arginine methylation sites from the literature [5]. However,
we currently collected and integrated over 5000 experimentally
identified methyllysines and methylarginines in proteins, with
a>10-fold increase. Because more and more sites were charac-
terized, our understandings on protein methylation were greatly
advanced, while accumulative evidence demonstrated that the
aberrant methylation is highly associated with human diseases
[1, 6–9]. In this regard, the analysis of site-specific protein methy-
lation will provide important hints for further understanding
regulatory mechanisms of the cellular signaling, and generate
potential drug targets for biomedical usage.

Owing to the data accumulation, here we compiled a much
larger data set of experimentally identified protein methylation

Figure 5. The comparison of GPS-MSP with other existing tools, including BPB-PPMS [21], MASA [22] and PMeS [24]. We directly submitted the training data set to these

tools for the prediction, while the LOO results of GPS-MSP were used for the comparison. (A) For methyllysines; (B) For methylarginines. A colour version of this figure

is available at BIB online: https://academic.oup.com/bib.
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sites. We took all known methylation sites as positive data (þ),
and all non-methylated lysines or arginines in the same proteins as
negative data (�). The negative data set can also be prepared with
other methods [42]. For example, Musite included unphosphory-
lated sites from both phosphorylated and unphosphorylated pro-
teins [40]. However, a previous analysis demonstrated that different
training data construction methods generated similar and consist-
ent results for the performance evaluation [42]. By analyzing the
data set, we observed that different types of methylated proteins
prefer to be significantly enriched in distinct biological processes
and pathways, and there is a strong sequence preference for each
type of methylation sites. Then we used the data set for training
computational models, and developed GPS-MSP for the prediction
of methylation sites. Besides the general prediction of methyllysines
and methylarginines, GPS-MSP can also predict potential methyla-
tion types for modified sites. The robustness and performance were
critically evaluated, and GPS-MSP was compared with other existing
tools. We observed that the classification of methylation sites into
distinct types can considerably improve the prediction accuracy,
whereas the satisfying accuracy proposed that GPS-MSP can be a
useful predictor for analyzing protein methylation.

In our data set, known methylation sites were collected from up
to 106 organisms (Supplementary Table S1). Although the number
of methylation sites was limited in most of species, we still con-
structed 15 and 13 organism-specific predictors with�50 and�30
sites, for the prediction of general or type-specific methylation sites,
in Homo sapiens, Mus musculus, Saccharomyces cerevisiae, Rattus norve-
gicus, Leptospira interrogans, Sulfolobus solfataricus and Desulfovibrio
vulgaris, respectively (Figure 6). Also, we performed the LOO valid-
ation and 4-, 6-, 8- and 10-fold cross-validations for organism-spe-
cific predictors with�50 sites of H. sapiens (Supplementary Figure
S2), M. musculus and S. cerevisiae (Supplementary Figure S3).

For the future prediction of protein methylation sites, we
proposed that currently available tools including GPS-MSP
should be maintained and improved for academic research. If
available, newly identified protein methylation sites will be con-
tinuously collected and integrated into computational models,
for a better prediction. Also, analogous to protein phosphoryl-
ation which is catalyzed by numerous protein kinases (PKs) [43],
lysine and arginine methylations are also performed by various
PKMTs and PRMTs, respectively. Because different PKs exhibit

different specificities for the recognition of substrates, we be-
lieve that protein methylation is also carried out in a PKMT- or
PRMT-specific manner. However, owing to the data limitation,
the prediction of PKMT- or PRMT-specific methylation sites is
still not available in the current stage. Also, although 208
human methyltransferases were computationally identified
[44], the exact numbers of PKMTs and PRMTs in most of the or-
ganisms were not known. In this regard, both the collection of
methyltransferase-specific sites and the characterization of
PKMTs and PRMTs in eukaryotes will be important challenges
for future studies. In addition, although several thousands of
protein methylation sites were identified, the biological func-
tions and regulatory roles of most of sites were not reported.
Thus, combining both computational predictions and experi-
mental validations will generate more useful information, and
propel the study of protein methylation into a new phase.

Key Points
• Different types of methylated proteins are preferentially

involved in distinct biological processes and pathways.
• Different types of methyllysines and methylarginines

have different sequence profiles for the modification.
• The GPS-MSP is a computational tool for the predic-

tion of different types of methyllysines and methylar-
ginines, besides the general prediction of methylation
sites in proteins.

• The classification of methylation site into different
types for training can considerably improve the predic-
tion accuracy.

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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