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GPS-Lipid: a robust tool for 
the prediction of multiple lipid 
modification sites
Yubin Xie1,*, Yueyuan Zheng1,*, Hongyu Li1,*, Xiaotong Luo1, Zhihao He1, Shuo Cao1, Yi Shi1, 
Qi Zhao1,2,3, Yu Xue4, Zhixiang Zuo1,2 & Jian Ren1,2,3

As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an 
important mechanism for the regulation of variety aspects of protein function. Over the last decades, 
three classes of lipid modifications have been increasingly studied. The co-regulation of these different 
lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics 
resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a 
tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle 
Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven 
to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted 
a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-
Lipid, but also an integrative database and visualization tool. We performed a systematic analysis 
of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results 
demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and 
prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is 
expected to serve as useful resource for the research on lipid modifications, especially on their co-
regulation.

Most genes in eukaryotic cell are post-translationally modified by a wide range of chemical groups. Among those 
post-translational modifications, the addition and removal of lipid groups to certain amino acids is a key modi-
fication that orchestrates the subcellular trafficking1,2, signaling3,4 and membrane association5 of proteins. With 
the rapid development of numerous innovative techniques, three prevalent forms of lipid modifications, such as 
S-palmitoylation, prenylation and N-myristoylation, are now extensively studied.

The reversible attachment of a 16-carbon fatty acid palmitate to protein via thioester linkage is called as 
S-palmitoylation6. By effectively increasing the hydrophobicity of its modified substrates, the S-palmitoylation 
process can dynamically regulate the membrane association of various cellular proteins1,2. Cellular pro-
teins may also be covalently modified with the 14-carbon saturated fatty acid myristate, which is known as 
N-myristoylation. By recognizing a MGXXXS/T signature at N-terminus, the N-myristoyl transferase (NMT) 
may catalyze the addition of myristate to glycine via an amide bond7,8. Another important type of lipid modifica-
tion is prenylation. This process involves the addition of a 15-carbon farnesyl group or a 20-carbon geranylgeranyl 
group to a C-terminal cysteine that conform to a consensus CAAX motif 9. Typically, the farnesylation is catalyzed 
by protein farnesyltransferase (FTase)10, whereas the geranylgeranylation is performed by protein geranylger-
anyltransferase type I (GGTase-I)11,12. However, in case of Rab proteins, the geranylgeranyltransferase type II 
(GGTase-II) which recognized a C-terminal CC/CXC motif is found to catalyze the geranylgeranylation pro-
cess9,13. Although the enzymatic processes of protein lipidation vary greatly, different types of lipid groups are still 
found to modify similar protein substrates, which implies a strong co-regulation between different lipid modifica-
tions. One of the most striking example is the regulation of small GTPases in subcellular trafficking by prenylation 
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and palmitoylation14. In Ras and Rho families, palmitoylation frequently occurs in the hypervariable domain 
that adjacents to the prenylated C-terminal end CAAX box15. These two types of lipid modification provide suf-
ficient hydrophobicity for proteins to localize on cellular membranes and the precise subcellular localizations of 
these small GTPases are essential for their proper functionalities16. Additionally, with the help of an intracellular 
palmitoylation–depalmitoylation cycle, the prenylated small GTPases are able to dynamically traffic from Golgi 
apparatus to plasma membranes17. A similar co-regulatory mechanism was also reported between myristoylation 
and palmitoylation. Given the fact that the myristoylation, by itself, is not providing enough hydrophobicity of 
the modified protein for its membrane association18, extra N-terminal palmitoylation on the myristoylated pro-
teins are usually required for the stable membrane attachment and translocation to rafts/caveolae or intracellular 
liquid-ordered domains19,20. Some Guanylate Cyclase Activating Proteins21, most of the members of the Src family 
of protein tyrosine kinases22 and the Giα  subfamily of alpha subunits of G proteins23 are examples that undergo 
this kind of regulation. Thus, dual-lipid modifications are responsible for the correct localization of many signal-
ing proteins, and play crucial roles in coordinating the extracellular stimuli and intracellular signaling.

Due to their essential physiological functions, the dysfunctions of lipid modification may lead to many sorts of 
diseases. For example, the overexpression of palmitoyl acyltransferases (PATs) may implicate in schizophrenia24  
and Huntington’s disease25. The N-myristoylation is observed to mediate the viral Infectivity and eukaryotic 
infections26. Taken together, the research on lipid modification, especially on the co-regulatory mechanisms, will 
be particularly important for identifying potential drug targets for further diagnostic and therapeutic considera-
tion. However, due to the limitations of integrative bioinformatics resources, the overall investigations that focus-
ing on the co-regulation of lipid modifications are seldom performed. This deficiencies may grievously hamper 
the development of effective therapies for disorders related to lipid modifications.

Recently, several prediction tools for lipid modifications were constructed. CSS-Palm27 and CKSAAP-Palm28 
are two widely-used tools that can be used to predict palmitoylation sites. NMT7 and Myristoylator29 were spe-
cifically designed for N-myristoylation prediction. PrePS9 was proposed to predict protein CAAX farnesyla-
tion, CAAX geranylgeranylation and Rab geranylgeranylation sites. Unfortunately, none of them can predict a 
complete set of lipid modification sites and assist the research on co-regulatory mechanisms between different 
lipid modifications. Beyond that, the number of experimentally identified lipidation sites has been significantly 
expanded in recent years, which provides an opportunity for improving the performance of lipid modification 
sites prediction.

In this work, we present GPS-Lipid, which is a comprehensive predictor for multiple protein lipid modifica-
tion sites. From the published literatures, we manually collected 737 S-palmitoylation sites in 361 proteins, 106 
S-farnesylation sites in 97 proteins, 95 S- geranylgeranylation sites in 70 proteins and 283 N-myristoylation sites 
in 281 proteins. Using this comprehensive dataset, we developed a new algorithm called GPS-Lipid, in which we 
employed the ALC-PSO30 method in our previous GPS algorithm for model training . Both a standalone package 
and an online service were freely available at http://lipid.biocuckoo.org.

Results
Development of GPS-Lipid for the prediction of lipid modification sites. Previously, we developed 
GPS (Group-based Prediction System) algorithm and successfully applied it to the prediction of post-transla-
tional modification sites such as phosphorylation31 and sumoylation32. In this work, for the prediction of protein 
lipid modification sites, we developed an update version of GPS algorithm, which adopted the ALC-PSO strategy 
as shown in Fig. S1 to prevent premature convergence and maintain fast training feature. We named this updated 
tool as GPS-Lipid.

To evaluate the performance of GPS-Lipid, LOO and 4-, 6-, 8-, 10-fold cross validation were performed for 
S-palmitoylation, N-myristoylation, S-farnesylation and S-geranylgeranylation, respectively. Apparently, the 
AUCs for all tests are larger than 0.9 (Fig. 1A–D), indicating that GPS-Lipid is an accurate predictor. Furthermore, 
the ROC curves of 4-, 6-, 8-, 10-fold cross validations were found to be close to LOO validation in all lipid modi-
fication predictors, which demonstrates that GPS-Lipid is also a robust predictor. Since the positive and negative 
dataset are highly imbalanced in our training set, we calculated the precision-recall curves to further evaluate the 
performance of GPS-Lipid. A similar result was observed, which further confirmed that GPS-Lipid is an accurate 
and robust predictor even in the case of imbalanced training set (Fig. S2). To further evaluate the accuracy of 
GPS-Lipid, an independent test dataset was used. Due to data size limitation, only S-palmitoylation were eval-
uated. The AUC of the prediction for this independent test dataset was 0.8712 (Fig. 1E), further indicating the 
robustness of GPS-Lipid.

We then compared GPS-Lipid with known predictors such as NMT, CSS-Palm and CKSAAP-Palm. The LOO 
validation was carried out for all predictors. As a result, the performance of GPS-Lipid is superior to all other 
predictors: the AUCs for palmitoylation and myristoylation prediction using GPS-Lipid are 0.9434 and 0.9940, 
respectively, while the AUCs for CSS-Palm, CKSAAP-Palm and NMT are 0.8682, 0.8254 and 0.9028, respectively 
(Fig. 1F).

Availability and Utility of GPS-Lipid. GPS-Lipid can be easily accessed through either standalone pack-
age or interactive web server. The GPS-Lipid web server provides a friendly interactive interface (Fig. 2A). Below 
the “sequence panel”, many interactive options are provided to help users configure their own run of GPS-Lipid. 
The “PTM Type panel” lists four supported lipid modification types to allow users conveniently predict any com-
binations of lipid modifications. The “threshold panel” provides three thresholds to allow users run GPS-Lipid 
with high, medium and low stringency. The “console panel” allows users to input the sequences through file and 
provides protein sequences example to run GPS-Lipid.

http://lipid.biocuckoo.org
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Figure 1. Performance evaluation and comparison of GPS-Lipid. (A–D) The performance evaluation for 
the predictions of S-palmitoylation, N-myristoylation, S-farnesylation and S-geranylgeranylation. The LOO 
and 4-,6-,8-,10-fold cross validation were performed. (E) An additional test set that was not included in the 
training set was applied to carry out the further evaluation of palmitoylation prediction. (F) The performance 
comparison among GPS-Lipid, CSS-Palm, CKSAAP-Palm and NMT. To avoid any bias, the same data set was 
used and the LOO validation was performed.

Figure 2. A snapshot of GPS-Lipid. (A) The human tyrosine-protein kinase Yes (YES1), mouse guanine 
nucleotide-binding protein G(i) subunit alpha-2 (GNAI2) and Arabidopsis thaliana rac-like GTP-binding 
protein (ARAC3) were taken as an example to try out the predictor. All the four supported lipidation were 
selected and predicted using the default threshold. (B) The predicted results of these three protein sequences. 
Different modification types were marked with different colors. (C) Visualization of the predicted results. By 
clicking on the “visualize” button in the result page, the lipid modification sites are illustrated in a domain 
graph. To distinguish between different lipid modifications, the visualization tool will marked them with 
different colors.
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To clarify the utility of GPS-Lipid web server in more detail, here we took the protein sequences of 
human tyrosine-protein kinase Yes (YES1), mouse guanine nucleotide-binding protein G(i) subunit  
alpha-2 (GNAI2) and Arabidopsis thaliana rac-like GTP-binding protein (ARAC3) as an example.  
Multiple sequences can be inputted for GPS-Lipid via FASTA format. Alternatively, the sequences 
could also be uploaded as a FASTA format file. Using a default threshold, the potential lipid  
modification sites of our example are predicted and presented as shown in Fig.  2B. YES1 is known 
to be modified by N-myristoyl group at N-terminal glycine, which is essential for its regulation role 
in cellular transformation33. As expected, GPS-Lipid successfully predicted the N-myristoylation 
at N-terminal glycine. As for GNAI2, GPS-Lipid identified an N-myristoylation site at position 2,  
which has been reported to associate with the constitutive activation of alpha i2 signal transduction functions34. 
We also identified several geranylgeranylation sites in the C-terminal of ARAC3 where a CAAX motif has been 
identified through an in vitro prenylation screen35,36. Taken together, GPS-Lipid is able to identify different 
kinds of known lipid modification sites, indicating its robustness and reliability.

In addition to the lipid modification predictor, we also developed a visualization tool to generate a schematic 
diagram as shown in Fig. 2C. By marking the functional domains with their precise lipid modification sites in 
proteins, the visualization tool can assist researchers in illustrating the underlying mechanisms of lipid modifi-
cation process.

The co-regulatory mechanisms in Lipid modifications. To conduct a deep analysis of the 
co-regulatory mechanisms in lipid modifications, we constructed a comprehensive lipid modification dataset 
that contains 1221 manually collected lipidiation sites, 1447 palmitolyation proteins from high-throughput screen 
and 2257 GPS-Lipid predicted lipidiation sites. Interestingly, a large proportion of proteins were modified by at 
least two types of lipid groups, indicating a strong co-regulation was existed between different lipid modifications 

Figure 3. The co-regulatory mechanism of lipid modifications. (A) The distribution of lipid modified 
proteins in our collected sequence library. (B) The correlation between all six combinations of dual-lipid 
modification. The color strength represents the significance level calculated from the chi-square test. Positions 
in gray were nonsense dual-lipid modifications. Positions marked with an asterisk are cases with significant 
correlations (i.e. P <  0.05 or Significance >  2.99), while positions with two asterisks represent very significant 
correlations (i.e. P <  0.01 or Significance >  4.61). (C) The position distribution of different dual-lipid 
modifications. Four significantly correlated dual-lipid modifications were tested using chi-square test. The 
horizontal axis represents three tested flanking regions, while the vertical axis represents the significance of 
whether two types of lipid modification sites are trend to locate adjacently. The red line denote the significance 
level with probability lower than 0.05. (D) The in situ crosstalk between prenylation and palmitoylation. The 
x-axis represents three pairs of potential in situ crosstalk, while y-axis represents the enrichment ratio. Palm, 
Gera and Farn refer to S-Palmitoylation, S-Geranylgeranylation and S-Farnesylation, respectively.
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(Fig. 3A). It should be noted that the majority of the co-regulated proteins contain palmitoylation site, demon-
strating that palmitoylation is a key modification that coordinate with other lipidation to modulate a diverse 
cellular functionality.

It is reported that proteins were often modified sequentially with different lipids. To explore how the dif-
ferent lipid modifications co-regulate, we performed a statistical analysis on the co-occurrence of all six com-
binations of dual-lipid modification. We found S-palmitoylation was significantly (P <  0.05) co-located with 
N-myristoylation, S-farnesylation and S-geranylgeranylation (Fig. 3B, Table S7). An obvious dual-lipid modifica-
tion of S-farnesylation and S-geranylgeranylation were also detected (Fig. 3B).

We next analyzed the spatial relationships of different lipid-modified residues. As expected, we observed 
that S-palmitoylation sites are significantly (P <  0.05) enriched in proximal regions of N-myristoylation, 
S-farnesylation and S-geranylgeranylation sites (Fig. 3C, Table S8). Also, a highest spatial correlation was 
observed between S-farnesylation and S-geranylgeranylation (Fig. 3C). When extending the flanking region from 
(5,5) to (15,15), the level of significance was obviously decreased in all cases of dual-lipid modification. In this 
regard, we propose that the adjacent modification of two lipid groups are a key mechanism for dual-lipid modi-
fication, and palmitoylation should be the most essential lipid modification which required for the attachments 
of other lipid groups.

Since the two different types of prenylation will recognize the same C-terminal CAAX box, we speculated 
that the strong spatial relationship observed between S-farnesylation and S-geranylgeranylation was mainly 
caused by their in situ crosstalk. We performed a hypergeometric test to test whether S-farnesylation and 
S-geranylgeranylation will modify the same terminal cysteine. As palmitoylation can also occur in cysteine, we also 
calculated the significance of in situ crosstalk between palmitoylation and prenylation. Interestingly, we observed 
that S-farnesylation was significantly (P =  0) in situ crosstalk with S-geranylgeranylation (Fig. 3D, Table S9).  
On the contrary, palmitoylation and prenylation was found to be unlikely to occur at the same cysteine residue. 
This result suggested that farnesylation and geranylgeranylation are two modifications with similar nature and 
functionalities. There may be a dynamic regulatory process that maintain the equilibrium between S-farnesylation 
and S-geranylgeranylation in mammalian cells, which is still needed further experimental verification.

Discussion
Attachment of lipophilic groups is a widespread modification that has essential functions in eukaryotic cell. 
Over the past decades, at least four different types of lipid modifications are increasingly studied, which resulted 
numerous data. We collected all experimentally validated lipid modification data, based on which GPS-Lipid was 
developed to predict different types of lipid modification sites at the same time. Together with the comprehensive 
lipid modification dataset and visualization tools, GPS-Lipid is able to greatly assist the investigation of lipid mod-
ification for the research community. One of the most important function of GPS-Lipid is the ability to simultane-
ously identify different types of lipid modification, which would be of great help for the research of co-regulation 
between different types of lipid modification. As previously reported2,37, proteins were often attached sequentially 
with different types of lipid. Signal transducing proteins, such as guanine-nucleotide-binding protein-α  (Gα ) sub-
units and non-receptor tyrosine kinases, were first post-transnationally modified by palmityl group at N-terminal 
Cys residues. Following this, the adjacent Gly residue will be N-myristoylated and targeted to plasma membrane. 
Similar dual-lipid modifications were also observed in Ras proteins and other monomeric GTPases. At their C 
termini, those proteins were first modified by farnesyl group at the CAAX box, then, the adjacent palmitoylation 
will lead to a subcellular trafficking from endoplasmic reticulum to Golgi apparatus and plasma membrane. In 
consideration of these important physiological functions, the study of co-regulatory mechanisms between differ-
ent lipid modifications will be distinctly important for further diagnostic and therapeutic considerations.

With GPS-Lipid, one can predict all potential lipid modification sites for a given interesting protein sequences, 
which provides specific targets for the subsequent experiments. We applied GPS-Lipid to our collected sequence 
library to systematically investigate the co-regulatory in lipidation. We observed that the four different types of 
lipidation are obviously crosstalk with each other. Specifically, a significant in situ crosstalk was detected between 
S-farnesylation and S-geranylgeranylation. However, as the training data set contained a limited amount of pre-
nylation sites, the resolution of the predictions for S-farnesylation and S-geranylgeranylation will be insufficient. 
Therefore, the level of in situ crosstalk between S-farnesylation and S-geranylgeranylation may probably be over-
represented. By incorporating a larger data set for prenylation, it will be possible to further refine the prediction 
accuracy.

Although the current performance of GPS-Lipid is satisfactory, some lipid modification sites still cannot be 
properly predicted. Using our training dataset, we predicted the potential lipid modification sites with a default 
threshold and counted the number of mis-classified sites (Fig. S3). The statistical results suggest that our models 
are highly sensitive, however, there are still some negative sites incorrectly predicted as positive sites. To reveal the 
sequence characters of those false positive sites, we plot their motif representation using WebLogo38. Just as we 
have expected, the mis-classified lipid modification sites all share a very low sequence similarity and no apparent 
motif is detected (Fig. S4). Since the GPS algorithm is predicted based on groups, this kind of low similarity sites 
will be predicted in the non-consensus models. However, the dataset being assigned to non-consensus groups is 
very limited, therefore some false positive predictions will be introduced into our tool. An effective way to solve 
this problem is by gathering more low-similarity sites in the training dataset, in other words, to enlarge the train-
ing set in non-consensus groups.

In the future, further development of GPS-Lipid will be performed, which includes extension to other types 
of lipid modification, such as GPI-anchor addition, S-diacylglycerol addition and Cholesterol addition. Besides, 
a more precise GPS algorithm will be adopted in the next version of GPS-Lipid.
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Methods
Data collection and preparation. The training data set in GPS-Lipid was manually collected by searching 
the scientific literatures (published before Nov. 2014) in the PubMed with keywords such as “Palmitoylation”, 
“Myristoylation”, “Farnesylation” and “Geranylgeranylation”. Here, we totally collected 737 S-palmitoylation sites 
in 361 proteins, 106 S-farnesylation sites in 97 proteins, 95 S- geranylgeranylation sites in 70 proteins and 283 
N-myristoylation sites in 281 proteins. To provide full access to the above collected data set, an online data-
base was then developed and the intact annotations from UniProt and NCBI were integrated. As previously 
described, to avoid any overestimation of prediction accuracy, the redundant sites should be removed, and the 
CD-HIT39 with a threshold of 40% sequence identity was used to single out homologous proteins. If two proteins 
are modified by lipid groups at the same position and present more than 40% sequence identity, only one protein 
was preserved. In particular, 65 palmitoylation sites was randomly selected from the non-redundant dataset to 
construct an additional test set. Due to data limitation, the additional test set for other lipid modifications were 
not constructed. For the preparation of training data sets, we took known lipid modification sites as the positive 
dataset, while all other non-modified residues, i.e. cysteine and glycine, in the same substrates were taken as the 
negative dataset. As a result, 579 S-palmitoylation sites, 226 N-myristoylation sites, 82 S-farnesylation sites and 71 
S-geranylgeranylation sites were retained from 277, 226, 78 and 52 protein substrates as the final positive training 
data set (Supplementary table S3 – S6). While the corresponding negative dataset contains 3002 non-palmitoy-
lated sites, 6754 non-myristoylated sites, 613 non-farnesylated sites and 192 non-geranylgeranylated sites.

To include as much as possible lipid modification sites, another 1259 high-throughput experimentally ver-
ified palmitoylated proteins was collected from PubMed. By using GPS-Lipid with a high threshold, the exact 
palmitoylation sites for those high throughput verified proteins were predicted and integrated into the lipid mod-
ification database. Notably, we also constructed a sequence library for further identifying the co-regulation mech-
anisms of lipid modifications by integrating the collected data set and high-throughput data set.

The Algorithm of GPS-Lipid. Based on the hypothesis that similar short peptides exhibit similar biochem-
ical properties and biological functions31, a previously described GPS algorithm32 was applied to predict poten-
tial lipid modification sites. In GPS algorithm, four sequential training procedures including modification sites 
clustering, Motif length selection (MLS), Weight training (WT) and Matrix mutation (MaM) were adopted for 
improving the prediction performance.

Before the training steps, we first took known lipid modification sites as the positive dataset, while all other 
non-modified residues (cysteine for palmitoylation and prenylation, glycine for myristoylation) in the same sub-
strates were taken as the negative dataset. A detail statistics on training dataset was shown in Table S1. To enable 
the subsequent training steps, we extract the lipid modification site peptides as a lipid modified residue, i.e. 
cysteine and glycine, flanked by 30 residues upstream and 30 residues downstream.

In consideration of the fact that one type of post-translational modification (PTM) is capable of recognizing 
multiple motifs, the modification sites clustering approach was carried out to classify the lipid modification sites 
into several different groups based on recognition motifs. For N-myristoylation, the modified sites that follow an 
N-terminal MGXXXS/T motif were classified into a consensus set, while the other modified sites were classified 
into a non-consensus set. Similar strategy was also applied to prenylation. The farnesylation sites were classified 
into consensus and non-consensus class based on C-terminal CAAX motif. As for S-geranylgeranylation sites, the 
CAAX and CXC/CC motif were used. Since no apparent motifs were reported in S-palmitoylation, the palmitoy-
lation sites were just clustered into groups using a previously described k-means approach. As a result, based on 
the sequence similarity of training data set, the S-palmitoylation sites were clustered into three optimal classes. In 
the k-means methods, we first calculated the similarity score between two given S-palmitoylation peptides using 
Equation 1.

.
.

=S A, B Num ofconserved substitutions
Num of all substitutions

( )
(1)

A conserved substitution is a substitution with a Score(a, b) > 0 in the BLOSUM62 matrix. The S(A, B) ranges 
from 0 to 1. The distance between the two PSP(m, n) is then defined as: D(A,B) =  1/S(A,B). If S(A,B) =  0, we sim-
ply let D(A,B) =  ∞. The k-means algorithm clusters the palmitoylation sites by exhaustive testing. First of all, two 
palmitoylation sites were randomly chosen as the centroids. Secondly, other positive sites were compared with 
the two centroids and the distances were calculated. With the shortest distance, the positive sites were then clus-
tered into the corresponding groups. Thirdly, the centroids were updated with the highest average identity score. 
Optimal cluster can be obtained by iterative repeat of the second and third steps.

To evaluate the amino acid preference of modification enzymes, the WT method was adopted to optimize the 
scoring weight at each position of a lipid modification peptide. In WT process, the scoring strategy was defined 
as Equation 2.

∑=
− ≤ ≤

S A, B w Score A , B( ) ( )
(2)m i n

i i i

The wi refers to the scoring weight of each position. Before the optimization steps, we re-illustrated the weight 
training process as Equation 3.

= ∆+w 1 w (3)i i

The Δwi represents the numeric changes of scoring weight after training process. And hence, the weight 
training process is aimed at finding a set of Δwi that can get an optimal performance. In GPS-Lipid, this step 
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maximizes the Sn value of the LOO validation under a Sp of 90%. Furthermore, to improve the prediction robust-
ness, a MaM process was subsequently performed. Similar to WT, the MaM process can also be described as 
Equation 4.

= ∆+S a, b Score a, b S a, b( ) ( ) ( ) (4)

Where S(a,b) is the optimal substitute score for amino acid a and b with respect to lipid modification. 
Score(a,b) is the substitute score in BLOSUM62 matrix. ΔS(a,b) represents the numeric changes of substitute 
score for amino acid a and b. Thus, the MaM approach seeks for a set of ΔS(a,b) that maximize the prediction 
performance. In the most recent version of GPS algorithm32, the WT and MaM was performed by the Particle 
Swarm Optimization (PSO) strategy. Although the original PSO algorithm had exhibited a fast-converging 
behavior in our previous test32, we still found that, like other population-based optimization techniques, a guided 
particle located at a local optimum may have a risk of trapping the whole swarm and leading them to a premature 
convergence. To improve the performance of PSO, a number of PSO variants have been developed. Recently, 
inspired by the phenomenon of aging observed in nature, a variant of PSO, namely the PSO with an aging leader 
and challengers (ALC-PSO) was proposed by Weineng Chen30. According to Weineng Chen’s implementation, 
the ALC-PSO was integrated into GPS-Lipid. Using ALC-PSO, the problem of premature convergence in WT 
and MaM was overcome and the fast-converging feature of PSO was fully preserved. For more detail of the GPS 
algorithm, see also the supplementary methods and Fig. S1.

Performance evaluation and comparison. To evaluate the performance of GPS-Lipid, the leave-one-out 
(LOO) and 4-, 6-, 8-, 10-fold cross validation was carried out on the training data set. In each validation, the 
sensitivity (Sn), specificity (Sp), accuracy (Ac), Mathew correlation coefficient (MCC) and precision (Pr) were cal-
culated. Based on the above evaluation, the ROC curves were plotted and the areas under ROC (AUC) were com-
puted. Particularly, an additional test set containing 65 S-palmitoylation sites was adopted to perform an extra 
evaluation on palmitoylation prediction. To further demonstrate the superiority of GPS-Lipid, we compared it 
with other existing tools. Since the Myristoylator did not predict precise myristoylation sites in protein substrates 
and the PrePS did not support batch prediction, the comparison will only perform among GPS-Lipid, CSS-Palm, 
CKSAAP-Palm and NMT. To avoid any bias, the same training data set used in the GPS-Lipid was adopted in 
other prediction tools. The prediction results along with the predicted scores are collected from the above three 
pieces of software. To draw the ROC curves, we change the prediction cutoff according to the collected scores and 
the performances under different cutoff are calculated. Specifically, when performing the comparison, the predic-
tion threshold for CSS-Palm was set as ‘all’. While for CKSAAP-Palm, we set the penalty factor C and Gamma as 
100 and 0.0000015, respectively. In NMT, a default parameter was used.

Statistical analysis of the co-regulatory mechanisms between different lipid modifications.  
Lipid modifications are known as key biological processes that impact diverse cellular functionality by mod-
ulating the membrane targeting, subcellular trafficking, intracellular sorting and stability of proteins in most 
eukaryotes. However, due to the unavailability of comprehensive bioinformatics resources, the co-regulatory 
mechanisms were seldom performed. In order to analyze the relationship between different lipid modification 
sites, we designed the following statistical methods. Firstly, we extracted all our collected lipid-modified proteins 
from the original dataset and constructed a sequence library containing 1479 proteins. Then, the GPS-Lipid was 
applied to predict potential lipid modification sites with a high threshold. All the predicted sites were subse-
quently mapped to the experimentally verified sites and the reduplicative sites were removed. Totally, there are 
3729 amino acid residues annotated as modifying by lipid groups.

As reported in literatures, dual-lipid modifications are important co-regulatory mechanisms that orchestrate a 
wide range of molecular processes in eukaryotic cell. With a chi-square test, we statistically examined the depend-
ency for all six combinations of dual-lipid modifications in our collected sequence library. Here, we take the case 
of palmitoylation-myristoylation dual-lipid modification as an example to describe the statistical method. Before 
the statistics, a statistical hypothesis is made as follow: the presence of a myristoylation sites in a protein is not 
relevant to the palmitoylation sites in the same protein substrate. Based on this hypothesis, the number of proteins 
that contain both myristoylation sites and palmitoylation sites is calculated. Similarly, the number of proteins that 
just contain myristoylation sites or just contain palmitoylation sites are also calculated. Then, the probability is 
obtained from a chi-square distribution.

After identifying significant dual-lipid modifications, we next further investigate the spatial relationship 
between different lipid modifications. Based on the prediction result from GPS-Lipid, we looked through the 
flanking regions, such as (5,5), (10,10) and (15,15), around a given lipid modification site and analyzed whether 
another type of lipid modification would be significantly occurred in those proximal regions with a chi-square 
test. Again, we took the palmitoylation-myristoylation dual-lipid modification as an example to describe the sta-
tistical method. Firstly, for all predicted myristoylated glycine residues, we counted the number of myristoylation 
sites with at least one palmitoylation sites in flanking regions. Also, the number of myristoylation sites that with-
out any palmitoylation sites in flanking regions is counted. Accordingly, two similar statistics were also performed 
on other non-myristoylated glycine residues. With a chi-square distribution, the probability is calculated.

At last, since the prenylation and palmitoylation are both modified the cysteine, a hypergeometric test was 
carried out to evaluate the in situ crosstalk between prenylation and palmitoylation. In this analysis, we tested 
whether prenylation is more inclined to be happened on palmitoylated cysteines. A more detail description on the 
statistical methods are presented in supplementary methods.
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