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Handled by Xiangdong Fang
Following the publication of the US National Research

Council (NRC) report ‘‘Toward Precision Medicine: Building
a Knowledge Network for Biomedical Research and a New
Taxonomy of Diseases” in 2011 [1], several nations have

announced that their national research programs would defi-
nitely head toward this direction. Now, precision medicine
(PM) became a banner for many large-scale biomedical
research programs not only in the United States (US) but also

in other nations including China. It is irrelevant now as to how
much each nation wishes to or will invest on PM but how
biomedical research and healthcare communities should

understand its intension and goals.
The two fields, genomics and bioinformatics – born

together with the Human Genome Project (HGP) – have been

facing enormous challenges and chances in the past three dec-
ades; even more, they, together with other emerging ‘‘omics”
fields, will have to readjust their prospective as many PM pro-

jects are going along to produce the long-promised BIG
DATA. To make sense of the data that are not only big but
also unprecedentedly diverse in a timely fashion, bioinformati-
cians are pushed to the frontier.
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In order to be prepared for pulling-acts-together, the 5th

Young Bioinformatics Principal Investigator (PI) Workshop
2016 has been recently organized by Beijing Institute of Geno-
mics and Beijing Institutes of Life Science, Chinese Academy

of Sciences in Beijing, China. Focused on bioinformatics with
its applications to big data integration and mining in cutting-
edge studies, the Workshop attracted more than 80 field
experts, providing an effective platform for in-depth discussion

for the roles and emerging issues of bioinformatics in PM. We
summarize opinions from the participants here (Opinions and
their authorship are listed according to the receiving order)

and hope that further brainstorming and discussion will nur-
ture new initiatives and collaborations among the concerned
parties.

Yu Xue (xueyu@hust.edu.cn)

KEYWORDS: Protein- and PTM-related database and resource;

Computational algorithm and tool; Protein–protein interaction

and PTM network; Proteomic and PTMomic data

For a better support of studies in PM, the variation, dynam-
ics, and plasticity of protein expression, as well as post-trans-

lational modifications (PTMs) must be considered as
important layers of the multi-dimensional omics data, which
are systematically characterized in individuals and computa-

tionally analyzed using bioinformatics approaches. This is
because most of biological processes are directly carried out
by proteins but not DNAs or RNAs, whereas PTMs play
essential roles in the regulation of protein functions. For

instance, phosphorylation, one of most well-studied PTMs,
is catalyzed by protein kinases. Protein kinases are potent
drug targets, which account for 70%–80% of total targets

approved for treatment of complex diseases such as cancer.
In addition, non-synonymous genetic variations or mutations
in coding regions can alter amino acid compositions so as to

influence protein PTM states, rewire PTM networks, and
potentially affect disease susceptibility in individuals. In this
regard, the development of protein- and PTM-related data-

bases and resources, the design of computational algorithms
and tools for accurately predicting PTM substrates and sites,
the modeling and analysis of protein–protein interaction (PPI)
and PTM networks, and the identification of potential drug

targets and biomarkers from proteomic and PTMomic data
have been posing great challenges for bioinformaticians. Also,
the proteomic and PTMomic data must be combined and

analyzed together with other types of omics data, to provide
a more integrative biomedical knowledge network in the
framework of PM.

mailto:junyu@big.ac.cn
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KEYWORDS: Genomic variant; Comprehensive variation profile;

Variant calling; Variant discovery

PM consists of two stages: first diagnose precisely, then treat
precisely. To diagnose precisely, we need to gather multi-omics
data and build a comprehensive profile of an individual. One

of the most fundamental and mature forms of omics data is
the genomic variant. Genomics has the advantages, not only
because genome sequencing is getting cheaper and cheaper,

but also because we have knowledge about a huge number
of genetic variations corresponding to phenotypes varying
from normal cells to disease phenotypes like cancer, due to
the enormous amount of past and current genomics research.

These differences between individual’s genomes form the start-
ing points of divergence for downstream effects like transcrip-
tion and translation. It is however still a challenge to

effectively capture the full catalog of variations from next-
and third-generation sequencing data. Substantial develop-
ments are still required, especially for reliably calling germline

variants from individuals with inherited diseases, and for call-
ing somatic variants in subclones of tumors, which may have
low allele fractions. As the technologies advance, both

sequencing and analysis will allow us to not only reliably call
variants with a wider size range than is currently possible,
but possibly also discover genetic variant types that are missed
by current analysis tools yet may impact an individual’s health,

leading to discovery of more potential causal variants.

Kunlin Zhang (zhangkl@psych.ac.cn), Suhua Chang

(changsh@psych.ac.cn)

KEYWORDS: Disease-associated genetic variant; Disease risk

evaluation; Functional variant discovery; Multi-dimensional

data; Integrative and system-level analysis; Disease-specific

genetic architecture atlas

Bioinformatics analysis for disease-associated genetic variants

such as single nucleotide polymorphisms (SNPs), copy number
variations (CNVs) could play an important role in PM. By
now, genome-wide association study (GWAS) and next-gener-
ation sequencing (NGS) technology have identified many

genetic variants conferring protection against specific diseases.
These genetic variants could contribute to PM from different
aspects. On January 30th 2015, just 10 days after the US

Government announced the Precision Medicine Initiative
(PMI), Francis S. Collins, Director of the National Institutes
of Health (NIH) and Harold Varmus, Director of the National

Cancer Center (NCI), US, wrote a perspective in the New
England Journal of Medicine entitled ‘‘A New Initiative on
Precision Medicine” [2]. One important approach of PM men-
tioned in this ‘‘outlook” is genotyping genetic variants of sus-

ceptibility genes, which have two applications. The first one is
to evaluate disease risk by building evaluation model like poly-
genic risk score or other machine learning method-based mod-

els to precisely guide the disease prevention [3]. The second
application of genetic variants is to assist disease treatment
by precisely selecting or designing genetic loci-targeted drugs
and treatment plan. To fulfill this, bioinformatics analysis,
probably combining with biological experiments, to discover
functional variants (the variants affect occurrence, develop-

ment or treatment response) is necessary since most identified
variants are only ‘‘tags” of functional variants. For this pur-
pose, multi-dimensional data from different levels were needed

for the integrative and system-level analysis, including gene
expression data, regulatory data, epigenetic data, and path-
way/network data. Many bioinformatics methods have been

developed for this purpose and we could expect that there will
be more to come. On the other hand, besides evaluating disease
risk and discovering functional variants based on known sus-
ceptibility loci, in future bioinformatics research for this field

should continue helping explore genetic variants associated
with diseases to complete the atlas of genetic architectures of
specific diseases.
Xiaoyue Wang (pumcwangxy@163.com)
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PM requires thorough investigation of each individual’s med-
ical and genetic information for the delivery of individualized

medical care. One of the big challenges is to integrate different
types of data and extract useful information from them for
clinical use. The data often include genomic sequences, lab test

results, imaging data, and patient’s health records such as
demographic data and family medical history. It often takes
a multidisciplinary team to work together on it. Bioinformat-

ics, as its name suggests, an interdiscipline to bridge biology
and informatics, is therefore an indispensable part in PM.
With a knowledge encompassing the computational method-
ologies, databases, genes and biology, bioinformaticians will

work closely with computer scientists and clinicians to
embrace the challenges in the following areas: to develop fast
and accurate algorithms to process genomics data in order to

catch up with the speed of data production; systematical meth-
ods to remove the noises from the omics data and proper nor-
malization of different data types; a unified framework to

facilitate integration of heterogeneous data, including ontol-
ogy-based frameworks for electronic health records.

Jianmin Wu (wujm@bjmu.edu.cn)

KEYWORDS: Molecular cancer classification; Personalized

treatment; Interrogation of heterogeneous data; Best practice of

data analysis; Clinical sequencing; Coordinated multidisciplinary

efforts

PM is reshaping the landscape of biomedical and clinical
research. For example, it is moving into an era by which the

tumors are characterized and treated based on their genomic
profiles rather than the tissue of origin. The driving force
behind this transition is the accumulation of identified muta-
tions, structural variations, epigenetic aberrations, as well as

dysregulation of mRNA expression, protein expression, and
PTMs, from numerous omics studies. A few of these studies
have already led to novel molecular classifications of cancer,
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which present new opportunities for the personalized treat-
ment. However, the implementation of PM poses substantial
challenges for bioinformatics, due to the heterogeneous nature

of – omics data and the need to interrogate multiple layers of –
omics data simultaneously. Bioinformaticians are needed to
work alongside statisticians to develop specific algorithms,

databases, and visualization tools for data analysis and inte-
gration. Besides, additional obstacles present in translational
research, such as the lack of best practice of data analysis

for NGS in clinical diagnostics and the inconsistence of data
formats of clinical information, would need to be tackled by
the coordinated efforts among bioinformaticians, biologists
and clinicians.

Ge Gao (gaog@mail.cbi.pku.edu.cn)

KEYWORDS: China Precision Medicine Initiative; Nationwide

Bioinformatics data infrastructure; Population-tailored

reference dataset; Biomedical knowledgebase; Data-rich science

As biology is increasingly turning into a data-rich science, mas-

sive data generated by high-throughput technologies pose both
opportunities and serious challenges. Powerful bioinformatics
infrastructure is critical to store, manage, and analyze these
data, and finally to extract novel knowledge effectively and

efficiently. This is especially true for PM which aims to provid-
ing ‘‘customized” healthcare by taking into account individual
variability in genes, environment, and lifestyle for each person

(https://www.nih.gov/precision-medicine-initiative-cohort-
program). One particular challenge in current China is a
nationwide data infrastructure which is capable of integrating

and curating millions of genetic and molecular data generated
by the China Precision Medicine Initiative (CPMI) in the com-
ing five years with various biomedical knowledgebases. Such
infrastructure will not only provide a one-stop portal for

scientists and clinicians, but also enable a population-tailored
reference dataset for Chinese which is critical for data
interpretation, clinical/pharmacogenetic marker identification

and drug development.

Fangqing Zhao (zhfq@biols.ac.cn)

KEYWORDS: Genomic structural variation; Repetitive sequence;

Algorithm and tool; Sophisticated model; Heterozygosity rate;

de novo SV detection; Inherited disease

Genetic variation is the genetic difference both within and

among populations, ranging from single nucleotide changes
to large-scale karyotypic alterations, which is the genetic basis
of phenotypic variation. Recently, extensive studies have

shown that genomic structural variation (SV) is involved in
various human genetic disorders. As a key technique in PM,
SV detection has been proven to be one of the most efficient

ways to screen candidate genes related to diseases. Detection
and annotation of SVs including indels, duplications, translo-
cations, and inversions, however, are much less straightfor-
ward due to the complex structure of certain types of SVs

and the repetitive nature of eukaryotic genomes. Many exist-
ing multi-signal based tools focus on increasing sensitivities
through a combination of all available information, which
works well in recognizing true variants with weak but concor-

dant signals [4]. It is necessary to develop new computational
algorithms and tools for identifying SVs associated with repet-
itive sequences and recognizing their precise breakpoints [5]. In

addition, more sophisticated models are required to estimate
the heterozygosity rate and to filter false positives, which will
help detect de novo SVs and homozygous deletion variants

from personal genomes with inherited diseases. Such develop-
ment will facilitate the discovery of SVs and susceptibility
genes present in our genomes and change our perspective on
DNA SVs and human disease.
Jian Li (Jianli2014@seu.edu.cn)

KEYWORDS: Driver gene or mutation; Druggable target; Data

analysis speed; Collaboration and communication; Gap between

data interpretation and clinical practice; Instructive information

PM is established on the basis of our deepened understanding

of the human genome and fast accumulation of biomedical
data. As a new medical model, it brings us new hope to cure
many complex diseases including cancer. However, we are still
at primary stage of this revolution and several barriers prevent

us from fully benefiting from this great change. (1) We still lack
sophisticated tools to accurately identify driver genes or muta-
tions that push disease progression. Even the coding

sequences, the best-investigated part of the human genome,
remain to be thoroughly understood. Too few mutations iden-
tified in coding sequences can serve as drug target. For non-

coding sequences, the situation is even worse; most of the
noncoding sequences are ‘dark matter’ for us. Thus we need
better tools to reveal druggable targets for precise treatment.
This goal requires close collaboration between bioinformati-

cians and molecular biologists. We could then better appreci-
ate the mechanisms underlying complex diseases and confirm
targetable molecules through combining findings from clinical

sequencing with experimental validation using simplified dis-
eases models (e.g., animal models of human disease). (2) Speed
is a necessary factor for clinical practice. For many acute dis-

eases, their progressions are so fast that most of current bioin-
formatic tools are not able to be competent enough to provide
any information for clinical decision in time. We need more

powerful hardware and software to speed up the process of
data analysis and eventually meet the need of fast clinical deci-
sion. (3) Communication between bioinformaticians and clini-
cians is vitally important. Clinicians face patients and perform

clinical practice based on the information provided by bioin-
formaticians. Bioinformaticians face data and make a judg-
ment on which biomarkers and therapeutic targets can be

used for clinicians. Both sides together composite a complete
PM system. As bioinformaticians, we need to provide clini-
cians with clear, understandable and instructive information.

The gap between data interpretation and clinical practice
should be bridged. This requires bioinformaticians to well
understand clinical practice and communicate timely with the
clinicians in a mutually understandable language.

https://www.nih.gov/precision-medicine-initiative-cohort-program
https://www.nih.gov/precision-medicine-initiative-cohort-program
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PM requires a deep understanding of the cause–effect relation-
ship between genes and phenotypes. Historically, chemical and
physical mutagenesis-based genetic screenings have been the
major tool for this challenging task. However, it is painstaking

to identify genes responsible for the interested phenotypes even
if the clinically-relevant phenotypes can be luckily modeled.
Since the accomplishment of HGP and other similar genome

projects, as well as the HapMap Project and its related ones,
association studies such as GWAS have been widely used as
a key step to establish hypotheses about the biological func-

tions of genes. But the following functional investigations are
still time-consuming case-by-case adventures. Fortunately,
we are now armed with the seemingly ultimate perfect weapon-

ries such as high throughput RNAi- and CRIPSPR-Cas9-
based functional screening tools that are both powerful and
efficient. The related bioinformatic software for shRNA and
gRNA designs and for experimental result evaluations have

also been available for researchers although their improve-
ments are still undergoing. The most critical step for large-
scale screenings is the clear definition of the biological and clin-

ical goals and the biochemical/clinical readouts that can be
monitored or measured by using sophisticated instruments
that are easily accessible to most researchers. To this end, good

understanding of the underlying cellular and molecular mech-
anisms of clinical questions is a must. Therefore, bioinformati-
cians are transforming themselves from pure data analysts into

real experts on the biological and medical questions they are
interested in and are required to collaborate with clinicians
in a more and more intimate manner.

Shuhua Xu (xushua@picb.ac.cn)

KEYWORDS: Population genomics; Genetic admixture; Genomic

diversity; China Precision Medicine Initiative; Regional effort;

National data infrastructure; Genetic structure of population

The genetic background of an individual is a crucial factor to
be considered toward personalized medicine or PM. It is now
very feasible to re-sequence an individual genome due to

recent advances in NGS technologies. However, identifying
and prioritizing disease-associated causal variants relies on
understanding the distribution of genetic variation within

and between populations. In this context, population geno-
mics plays a vital role in dissecting genetic architecture of
complex traits/diseases by separating locus-specific effects

from genome-wide effects, it is thus a bridge from evolution
to medicine. Over the past decades, many joint forces based
on international collaborations have made remarkable
achievements in the studies of human genetic variation, such

as the HGP, HapMap Project, Pan-Asian SNP Project, and
the 1000 Genomes Project. Nonetheless, considering very
heterogeneous ethnic groups and large population size in
China, regional efforts are necessary to provide a more pre-
cise and comprehensive characterization of the genomic
diversity. In addition, high mobility of people in recent his-

tory and modern society considerably increased the chance
of inter-ethnic marriages, or genetic admixture, which in turn
influences genome diversity and further affects phenotypes

relevant to health. Good news is that the Chinese Govern-
ment has launched CPMI, which is expected to produce vast
omics data at both individual and population levels at

increasingly faster rates in next 5–10 years. However, not
having a well-established national data infrastructure means
that we are not really ready to handle issues of data cura-
tion, standardization, integration or utilization, etc. Further-

more, lack of adequate knowledge of genetic structure of
populations increases the risk of failure of study design for
those ongoing sampling expeditions supported or not sup-

ported by CPMI.
Jingfa Xiao (xiaojf@big.ac.cn)

KEYWORDS: Cohort study; Healthy cohort; Disease cohort;

Data diversity and integration; PM knowledgebase; Health

maintenance; Disease treatment

According to NIH, PM is an innovative approach for disease

prevention and treatment, which takes more consideration of
individual differences in genes, environments, and lifestyles.
Patients share a similar set of symptoms may need different

treatments due to their distinct genetic variants. For example,
there are many causes of lung cancer, but only people who
have a variant within epithelial growth factor receptor

(EGFR) respond to treatment with tyrosine kinase inhibitors
[6]. Cohort study is a very effective approach for PM. For
instance, the well-known Framingham Heart Study that was
initiated in 1948 has made substantial contributions to under-

standing cardiovascular and metabolic diseases [7]. The
Nurses’ Health Study (NHS) that was established in 1976 [8]
has investigated into the risk factors for major chronic dis-

eases in women, such as cardiovascular disease and breast
cancer, whereas another cohort study called the Health Pro-
fessionals Follow-up Study (HPFS) [9] is all-male study com-

plement to the all-female study NHS. These cohorts help
uncover links between lifestyles and cancer, heart disease, as
well as other vascular diseases. The diverse data from cohort

studies, such as medical records, the patient’s genome, epigen-
ome, proteome, metabolome, environmental, and lifestyle
data (https://www.nih.gov/precision-medicine-initiative-cohort-
program), may build strong support for future health

research. China has been developing several plans for creating
and managing large research cohorts, such as healthy cohorts
in different areas, major disease cohorts and rare disease

cohorts over the next few years. One challenge for bioinfor-
maticians is how to effectively integrate these data and build
PM knowledgebase. These knowledge bases may integrate

gene, pathway, disease, symptom, pharmacon, diagnosis,
and treatment information. Information from knowledgebases
will provide a more effective way for researchers working on
health maintenance and disease treatment.

https://www.nih.gov/precision-medicine-initiative-cohort-program
https://www.nih.gov/precision-medicine-initiative-cohort-program
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Collaborative effort

PM by its nature requires high-coverage and accurate profiling
of a patient’s genetic, epigenetic and other pathological back-
ground, which defines classifications of the patients. However,

due to the hierarchical structures of the genetic and epigenetic
alterations and the heterogeneity across patients, it remains as
a challenge to obtain precise and comprehensive patient classi-

fications that can be smoothly translated into individualized
therapeutic strategies, especially for the complex diseases such
as cancer. One opinion, which I fully agree, is that we need to

go beyond the genetic and epigenetic profiling and classify the
patients by their mechanisms of disease (MoD). This is based
on the following facts. (1) The heterogeneous genetic and epi-

genetic spectrums usually converge into limited numbers of
disease-driving pathways. (2) While the genetic screenings of
pre-defined loci over-simplify the classification, the global-level
screenings suffer from distractive non-disease-driving alter-

ations, making it highly beneficial to incorporate the MoD
for preclusion of these potential false positives. (3) Many of
the upstream genetic alterations are currently undruggable,

and elucidation of the MoD would not only facilitate classifi-
cations of the patients, but also guide the search for applicable
in and off label usage of drugs. The next question is how to

infer the patient-specific MoD from the noisy multi-omics pro-
files and use this information for precise and translatable clas-
sifications of patients. The solutions rely on collaborative

efforts from bioinformaticians, systems biologists, molecular
biologists, and last but not the least, clinicians.

Xiaomin Ying (yingxm@bmi.ac.cn)

KEYWORDS: Cohort; Biological data; Clinical data; Bioin-

formatics; Data to medical decision; Knowledge mining;

Multi-omics and multi-modality data

PM comprises three stages, namely precision prevention, preci-
sion diagnosis, and precision therapy, which all rely on biolog-
ical and clinical data of large cohorts of patients and healthy
controls. Biological data include genomics, transcriptomics,

epigenomics, proteomics, metabonomics, and other omics
data. Clinical data include histopathological data, radiography
images, and other medical records. The storage, pre-processing

and security of these big data rely heavily on information tech-
nology (IT). The ultimate medical treatment of prevention,
diagnosis, and therapy are mostly handled by clinicians. All

the intermediate processes from data to medical decision
belong to the scope of bioinformatics. In other words, bioin-
formatics is a bridge from data to clinic, which makes it one
of the most important components in PM. Bioinformatics also

faces big challenges in PM. To discover medical knowledge
and finally make medical decisions in clinic, bioinformatics
has to mine knowledge and build models from big, multi-omics

and multi-modality data. Novel mining methods, novel model-
ing, and data fusion algorithms should be developed to meet
the requirements of PM. Opportunities co-exist with chal-
lenges. This is the best times for bioinformatics, since PMI will
produce unprecedented big data which are abundant ingredi-

ents for making delicious food. This is also the worst time
for bioinformatics, since it confronts all sorts of data and tries
to find the most valuable things to improve people’s health

(Figure 1).

Xuegong Zhang (zhangxg@tsinghua.edu.cn)

KEYWORDS: Big data; Data integration; Data to knowledge

conversion Bioinformatics method; Methodology and theoretical

development; Artificial intelligence; Machine learning

The quick accumulation of massive biological and medical

data has brought us great hope in people’s campaign against
diseases especially for complexes diseases like cancer and rare
genetic diseases. Big omics data have shown high potential

toward this goal, but to make this goal achievable, there is a
huge need for efficient and accurate bioinformatics methods
to process and analyze various types of existing and emerging

omics data, for efficient and reliable methods to handle and
process phenotypic data including medical records and data
from various types of equipment, and for powerful methods
that can convert data to information, and discover knowledge

from information. Technologies for obtaining biological and
medical data such as DNA sequencing, medical imaging, and
phenotype description at clinics are far from perfect. Both

the volume and complexity of biological and medical big data
have far exceeded the capability of human beings. Due to this
nature of the data, just the collection of big data or even the

systematic integration of big data does not automatically lead
to breakthroughs in PM. Methodology and theoretical devel-
opment becomes even more crucial than ever to fully realize
the potential in the big data. Recent successes of artificial intel-

ligence (AI) especially machine learning in the IT industry and
in playing games with human have demonstrated the great
power of applying advanced machine learning methods on

big data for solving complicated problems. Machine learning
has been playing important roles in methods for functional
genomics and systems biology, and will play more crucial roles

in the integrative analysis of mixed biological and medical big
data. It can be expected that advanced research on machine
learning and other AI methods and technologies for analyzing

big bioinformatics and medical informatics data will be a key
component in all efforts toward PM.

Wei-Hua Chen (weihuachen@hust.edu.cn)

KEYWORDS: Clinical outcome; Disease risk prediction; Diverse

genetic and environmental backgrounds; Capture of disease-

contributing factors; Multidisciplinary collaboration

One of the critical features of PM is its ability to tailor the pre-
ventive measures and medical treatments to the phenotypic
and genotypic characteristics of each patient in order to obtain
the best clinical outcome. Obviously, the best clinical outcome

one can get is not to get any diseases in the first place. To
achieve this, researchers first of all need to build predictive
models by using all available information pertaining to specific
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subjects including family history, personal disease history,
genomic mutational profile, gene expression profile, a variety

of related biometric measurements, and exposures to environ-
mental risk factors. The information will have to be collected
from a large number of individuals with diverse genetic and

environmental backgrounds so that all possible variations in
factors contributing to the development of the diseases can
be captured. Then in order to accurately predict disease risks,

individuals’ genetic and biometric information will have to be
regularly monitored, analyzed, and evaluated. PM thus calls
for collaboration from experts in the fields of bioinformatics,
big data, machine learning, data minding, cloud computing,

mobile health, and many others. Opportunities exist in every
step of the way for the academia, medical institutions, and
industry, so do challenges.

Yun Liu (yliu39@fudan.edu.cn)
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PM, which promises the ‘‘delivering the right treatment at the
right time, every time, to the right person.” as said by President

Obama when he announced PMI, is transforming the health-
care system and will, ultimately, change the practice of medi-
cine. In order to fulfill this promise, we rely on big data,

including clinical records, multi-omics data, lab-test results,
and imaging data, from which disease-specific patterns can
be identified and used to provide specific treatments unique

to each individual. Thus, data sharing is critical for achieving
the goal of PM. However, there are three major challenges for
data sharing: (1) institutional barriers. Data have been viewed
as a commodity these days, and groups with larger datasets

enjoy a competing advantage over groups with smaller ones.
However, these barriers will eventually hinder mutual aids
and communal breakthroughs. (2) Incompatible data systems.

We need to make sure that our systems can communicate.
Today, patient data are usually inaccessible and rarely docu-
mented in any usable way. Moreover, different institutions

may adopt different data standards, which makes it almost
impossible to integrate information across different systems.
(3) Patient privacy. Fears about privacy, confidentiality and
cyber-security must be addressed, so that regulatory issues

won’t hamper innovation. Even though none of these chal-
lenges are simple to surmount, the scientific community has
realized that data sharing is essential for achieving the goal

of PM. The practice of sharing big data from many large col-
laborations among multiple institutions aboard has provided
invaluable experience for us and will eventually facilitate

progress.

Zhang Zhang (zhangzhang@big.ac.cn)
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Advancements in high-throughput sequencing technologies as
well as high-performance computing technologies accelerate
biomedical research entering into a new era of PM, with the

ultimate goal to develop more effective ways for precision
healthcare and personalized medical treatment [2]. To achieve
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this goal, we need to address several critical challenges that
result primarily from big data, including not only omics data
but also a wide range of health data (such as clinical data,

physiological data, and environmental data). One of the most
challenging issues is big data curation, that is, to enhance data
interoperability and consistency by the process of standardiza-

tion, quality control, and annotation. Although computer pro-
grams can aid, to a certain degree, to realize automated
curation, curation is heavily dependent on human resources

and is largely done by dedicated experts as well as the scientific
community (that is, expert curation and community curation,
respectively) [10]. Therefore, data curation as well as its sus-
tainable funding support can increase the promise to obtain

high-quality data that is critical to perform downstream data
analysis, with higher precision. Without high-quality data,
nothing could be achieved or at least it is not precise enough

for personalized healthcare or treatment. Second, computa-
tional methods that aim to associate omics data with health
data, decipher the underlying mechanisms of genetic varia-

tions, develop precise personalized healthcare and prevention
strategies, and dig out potential biomarkers for disease treat-
ment are badly needed. To make it achievable, worldwide

interdisciplinary communications and collaborations among
biologists, physicians, curators, bioinformaticians, IT develop-
ers, and others are very crucial. In addition, high-performance
computing technologies (e.g., cloud computing, Hadoop/

Spark) are desirable to be employed to speedup bioinformatics
tools that are often used to deal with large-scale datasets [11].
Third, a national-level infrastructure with powerful computing

resources is a must. PM implies big data and big data supports
precision research. Therefore, all spectrums of data operations
(including deposition, integration, curation, and analysis) are

becoming increasingly daunting and more time-consuming,
and thereby are impossible to be achieved in a single labora-
tory or institution, particularly considering the fact that

biomedical data keep growing at much higher rates.

Kun Huang (kun.huang@osumc.edu)
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The development of PM calls for integration of multiple types

of omics, imaging, and clinical data from large cohorts of
patients for different diseases. While advancement in informat-
ics methods tackling the algorithmic and infrastructure aspects
of PM will undoubtedly result in discovery of new biomarkers

and therapeutical schemes, issues on data security, privacy
protection, and data ownership will lead to new challenges
and hurdles on the success of such studies. Currently, many

of these problems are still being debated and solutions for
them are being explored. Nevertheless, it is critical that these
issues are taken into full consideration during both study

design and implementation stages as well as patient recruiting
and consenting processes to ensure sustainable operation of
the research programs. In addition, given the complicated eth-
ical and legal issues involved in generating, sharing, and con-

suming genetic data, the patients should be provided with
strong genetic counseling support. Last but not the least, while
many of the large cohort studies will benefit future patients, an
interesting problem is how to benefit patients who contributed
data to these studies. An example is the Total Cancer Care
Program adopted by multiple cancer centers in US. This pro-

tocol allows consented patients to be contacted for clinical tri-
als based on their genomic data.
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As the real sequel of HGP in both priority and scale, the PM
projects, including versions proposed among various nations,
will certainly have to pass on the legacy of HGP. (1) HGP

has a defined goal, which is to assemble a single complete
human genome sequence; PM projects also have their defined
goals: to build specialized databases from millions of patients

and cohorts. (2) PM projects drive to build new research
infrastructures, including emerging research fields and joint
research programs between basic and clinical research commu-

nities. (3) PM projects should recognize key technologies and
continue to fund them, such as single cell manipulation and
direct RNA sequencing. (4) PM projects should promote tech-
nology development and novel applications in relevant indus-

tries, such as assays for large-scale drug screening and novel
drug targets.

PM will not only change our research focuses and priorities

but also our ways to do research. (1) PM projects are definitely
patient-centric, where diseases and population-based cohorts
are where to start. (2) PM research activities are moving

toward common diseases in addition to genetic or rare dis-
eases. (3) All research projects need to be extended toward
the temporal direction in terms of sampling and following-up
studies. (4) All tools have to be sharpened toward their ulti-

mate resolutions; single-molecule and single-cell technologies
are certainly the rules not exceptions. (5) One obvious chal-
lenge for the life science/biomedical research communities is

to unite the professional language and conception as well as
to promote efforts and collaborations among four divergent
research domains: the anatomy–physiology, the cellular–

molecular biology, the genotype–phenotype, and omics–sys-
tem domains. In addition, a set of common elements have to
be extracted for knowledge sharing and integration. Finally,

in order to do a best job for PM, we have to recognize the
necessity of converging frontier technologies from other scien-
tific disciplines and fields, especially microelectronics, microflu-
idics, nanotechnology, and artificial intelligence. If we have to

point out one of them for which we have to muster, it is to
sequence RNA directly at single molecule level.
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