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Abstract: Protein phosphorylation is the most ubiquitous post-translational modification (PTM), and plays important 

roles in most of biological processes. Identification of site-specific phosphorylated substrates is fundamental for under-

standing the molecular mechanisms of phosphorylation. Besides experimental approaches, prediction of potential candi-

dates with computational methods has also attracted great attention for its convenience, fast-speed and low-cost. In this 

review, we present a comprehensive but brief summarization of computational resources of protein phosphorylation, in-

cluding phosphorylation databases, prediction of non-specific or organism-specific phosphorylation sites, prediction of 

kinase-specific phosphorylation sites or phospho-binding motifs, and other tools. The latest compendium of computational 

resources for protein phosphorylation is available at: http://gps.biocuckoo.org/links.php 
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INTRODUCTION 

 Many studies have indicated that various computational 
predictors developed in biology and biomedicine, such as 
those for predicting HIV cleavage sites in proteins [1-3], 
signal peptides [4], protein subcellular location sites [5-7], 
drug-target interaction [8], proteases and their types [9], 
membrane proteins and their types [10], enzyme functional 
class [11], enzyme specificity [12], GPCRs and their types 
[13], protein quaternary structural attributes [14, 15], protein 
folding rate [16], as well as a series of user-friendly web-
servers summarized in the Table 3 of [17], can generate 
many useful data for which it would be time-consuming and 
costly to obtain by experiments alone. Actually, these data, 
combined with the information derived from the structural 
bioinformatics tools (see, e.g., [18-20]), can timely provide 
very useful insights for both basic research and drug devel-
opment. This review is to summarize the progresses in de-
veloping phosphorylation databases and computational tools 
for predicting phosphorylation sites and other related fea-
tures. 

 Phosphorylation is the most essential post-translational 
modification (PTM) of proteins, modulates proteins’ con-
formation, stability, trafficking, interaction, and orchestrates 
cellular dynamics and plasticity. Biochemically, the catalytic 
domain of a protein kinase (PK) hydrolyzes adenosine 
triphosphates (ATPs) and transfers a phosphate moiety to the 
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acceptor residue (serine, threonine or tyrosine in eukaryotes) 
in the substrate. It was estimated that there are >500 and 
>1000 PK genes encoded in mammalian [21, 22] and plant 
[23] genomes. To ensure signaling fidelity, each PK only 
specifically modifies a defined subset of substrates, while 
aberrances of PK functions often result in a variety of dis-
eases and cancers. It was widely adopted that specific linear 
motifs around phosphorylation sites (p-sites) provide pri-
mary and major specificities for PK recognition [24-34]. 
However, numerous other mechanisms have also been pro-
posed to contribute additional specificities for PKs modifica-
tion in vivo, such as subcellular co-localization of PKs with 
their substrates, co-expression, co-complex, or physical in-
teraction (collectively called as “context”) [35-39]. Impor-
tantly, identification of new phosphorylated substrates with 
PK-specific p-sites is fundamental for understanding the 
molecular mechanisms of phosphorylation. Although ex-
perimental researches have contributed great efforts to ac-
cumulate a large number of phosphorylated substrates with 
their sites, recently computational study of protein phos-
phorylation has also emerged as a popular approach, and 
provided useful information for further experimental verifi-
cation. In this review, we briefly summarize more than 50 
public databases and predictors of protein phosphorylation 
for experimental and computational researchers. We apolo-
gize that the computational studies without publicly available 
web links are not introduced. The softwares which detect 
potential p-sites from mass spectrometry data were also not 
included, since they were developed for special usages. For 
more detailed information on algorithms, model construc-
tion, and mechanisms of phosphorylation specificity, we 
recommend several excellent reviews [18, 22, 26-28, 30-34, 
38, 39].  
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PHOSPHORYLATION DATABASES 

 In Table 1, we listed 22 phosphorylation-related data-
bases. To circumvent competitions, these databases usually 
focus on certain organisms. In 1998, Blom et al. developed 
the first phosphorylation database of PhosphoBase, including 
156 phospho-proteins with 398 p-sites [29]. Later, Kreegipuu 
et al. released PhosphoBase 2.0, with 1,052 p-sites in 414 
substrates [24]. In 2004, Diella et al. developed a public da-
tabase of Phospho.ELM [40] (Table 1). From scientific lit-
erature, they manually collected 556 experimentally verified 
phospho-proteins with 1,703 unique p-sites [40]. The full 
data in PhosphoBase was also integrated into Phospho.ELM 
[40] (Table 1). Currently, Phospho.ELM 8.3 contains 5,115 
known phosphorylated substrates (mostly in vertebrates) 
with 15,972 serine (S), 3,283 threonine (T) and 2,746 tyro-
sine (Y) p-sites [41]. Also, Hornbeck et al. collected 62,801 
non-redundant p-sites from scientific literature and high-
throughput experiments, and constructed a human- and 
mouse-centric database of PhosphoSitePlus [42] (Table 1). 
With a similar strategy, the Phosphorylation Site Database 
collected known phosphorylated proteins in prokaryotic or-
ganisms [43], while the HPRD release 9 was developed with 
80,751 p-sites in 8,163 human proteins [44] (Table 1). By 
literature mining and data integration from other databases, 
PhosphoNET collected 74,473 p-sites in human. With a 
similar method, Li et al. recently collected experimental in-
formation for ~50 types of PTMs and constructed the-
SysPTM 1.1 database, including 87,068 p-site in 24,705 tar-
gets [45].  

 Recently, phosphoproteomics with mass spectrometry 
(MS) techniques has generated a large number of p-sites. 
Gnad et al. collected 39,574 MS-derived p-sites from eu-
karyotes and prokaryotes and released PHOSIDA database 
[46, 47] (Table 1). With a similar approach, Bodenmiller et 
al. also developed a similar database of PhosphoPep v2.0, 
containing ~25,000 p-sites in S. cerevisiae, C. elegans, D. 
melanogaster and H. sapiens [48] (Table 1). The LymPHOS 
database contains 342 MS-based p-sites for primary human 
T cells [49], while the PhosphoGRID collected 6,440 ex-
perimentally verified in vivo p-sites in S. cerevisiae [50]. 

 Interestingly, studying phosphorylation in plants has also 
been paid much attention. The PhosPhAt 3.0 collected 
12,457 MS-generated phosphopeptides in A. thaliana [51, 
52] (Table 1). Later, Gao et al. developed a more compre-
hensive database of P

3
DB 1.1, with 14,670 p-sites in 6,382 

plant proteins [53] (Table 1). Recently, ProMEX contains 
4,226 M MS-derived p-sites for A. thaliana, C. reinhardii, 
M. truncatula, and S. meliloti, etc. [54], while PlantsP col-
lected ~300 MS-based p-sites for Arabidopsis thaliana 
plasma membrane proteins [55].  

 The Swiss-Prot knowledge base also contains experimen-
tal and predicted information for protein modifications, in-
cluding phosphorylation [56] (Table 1). By integrating 
Swiss-Prot information and other databases, dbPTM 2.0 con-
tained PTMs information of proteins, including 22,363 
known p-sites [57] (Table 1). With a similar method, Phos-
phoPOINT database was released with 15,738 p-sites in 
4,195 human substrates [58] (Table 1). Also, the protein-
protein information was integrated into PhosphoPOINT for 
PKs with their targets [58]. Systematic reconstruction of 

protein phosphorylation network was a great breakthrough in 
the field of computational phosphorylation [36, 37]. With 
motif-based predictors together with context information, 
Linding et al. developed a NetworKIN database and success-
fully discovered a highly potential phosphorylation network 
in H. sapiens [36, 37] (Table 1). Importantly, it’s widely 
adopted that proteins 3D structure determine their functions. 
In this regard, Phospho3D mapped Phospho.ELM data to 
PDB and obtained 3D structures of p-sites [59] (Table 1). 
Moreover, identification of protein-protein interactions me-
diated by phosphoprotein-binding domains (PPBD) is also 
an attractive problem. Gong et al. constructed PepCyber 
:P~Pep 1.2 and collected 11,269 PPBD-mediated interac-
tions among 387 PPBD-containing proteins and 1,471 sub-
strates [60] (Table 1). In addition, Ryu et al. developed 
PhosphoVariant database to identify genetic variations that 
potentially influence protein phosphorylation status [61] 
(Table 1). We also designed a comprehensive database of 
PhosSNP 1.0 (Phosphorylation related SNP) to systemati-
cally detect 64,035 single nucleotide polymorphisms (SNPs) 
that might change phosphorylation states in 17,614 human 
proteins [62].  

PREDICTION OF NON-SPECIFIC OR ORGANISM-

SPECIFIC PHOSPHORYLATION SITES 

 Accurate prediction of p-sites in given proteins is a major 
challenge in the field of computational phosphorylation.  
P-sites predictions could be classified into three categories, 
including non-specific, organism-specific and kinase-specific 
mode. To predict non-specific or general phosphorylation 
sites, Blom et al. prepared a training data set, including 584 
phosphorylated serine sites (pS), 108 phosphorylated threo-
nines (pT) and 210 phosphorylated tyrosines (pY) [63]. Then 
they developed the first online predictor of NetPhos in 1999 
(current version is 2.0), with an artificial neural network 
(ANN) algorithm [63] (Table 2). Later, Mackey et al. adopt-
ed the simple pattern recognition (SPR) method and con-
structed CRP to carry out an in silico proteolytic cleavage of 
the protein sequence for prediction potential non-specific p-
sites [64, 65] (Table 2). Moreover, PHOSIDA used the Sup-
port Vector Machines (SVMs) method to predict non-
specific p-sites, with a training data including 4,731 pS, 664 
pT and 107 pY sites [46] (Table 2). 

 To improve the prediction accuracy, phosphorylation 
sites predictors could be designed in an organism-specific 
manner, since different species might have distinct patterns 
in substrates for PKs modification. In 2004, Iakoucheva et 
al. designed a non-specific predictor of DISPHOS, which 
was implemented in a position-specific scoring matrix (PSS-
M) strategy and protein disorder information (DI) [66]. The 
latest version of DISPHOS 1.3 was re-trained with 1,079 
experimentally verified pS, 666 pT, and 375 pY sites, and 
supported species-specific p-sites prediction (Table 2). Re-
cently, Ingrell et al. collected 953 pS and 192 pT sites in 675 
yeast proteins and developed the first yeast-specific p-sites 
predictor of NetPhosYeast 1.0 [67] (Table 2). Later, Miller et 
al. collected 103 pS and 37 pT in bacterial proteins as the 
training data set, and constructed the first bacteria-specific 
software of NetPhosBac 1.0 [68] (Table 2). Both of the two 
tools were implemented in ANN algorithms. With a training 
data set including 802 pS, 1,818pT and 676pY sites in
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Table 1. A Summary of Phosphorylation Databases. The Data Statistics were Carried out on May 12, 2010. a. Method, Methods 

Used in Collecting the Data. SL, Manually Curated from Scientific Literature; MS, Mass Spectrometry-Derived data; PS, 

Predicted p-sites; OS, Orthologous Sites of Experimentally Verified p-sites; TO, Taken from Other Databases or Web-

sites; FA, Further Computational Analysis; CI, Context Information. b. Ref., Whether the Information Provided in the 

Databases is Traceable to Origin Publications. c. The Reference for PhosphoNET is not Available. d. The Swiss-Prot 

Knowledge Base Contains 73,467 p-sites, Including Experimentally Verified and Predicted p-sites (Statistics on May 24, 

2009). For Data Statistics, the p-sites with Annotations of “By Similarity”, “Probable” and “Potential” were Removed. 

And only the Numbers of Experimentally Verified Phosphorylation Proteins with p-sites were Calculated. e. Only Experi-

mentally Verified p-sites were Counted 

Numbers 
Databases Main Propose Species Method

a
 Ref.

 b
 

Sub. Sites 

Phospho.ELM (PhosphoBase) 8.3 Experimentally verified p-sites in 

eukaryotes 

Mostly in verte-

brates 

SL, MS Yes 7,155 29,990 

PhosphoSitePlus Human- and mouse-centric database Mammals SL, MS, OS Yes 10,708 62,801 

The Phosphorylation Site Database Experimentally verified p-sites in 

prokaryotic organisms 

Archaea and 

Bacteria 

SL Yes - - 

HPRD release 9 Mainly for human p-sites Human SL Yes 8,163 80,751 

PhosphoNETc Mainly for human p-sites Human SL, TO Yes 12,400 74,473 

SysPTM 1.1 ~50 types of experimentally verified 

PTMs 

General TO, SL Yes 24,705 87,068 

PHOSIDA MS-based in vivo p-sites Eukaryotes & 

prokaryotes 

MS No 12,780 39,574 

PhosphoPep v2.0 MS-derived p-sites for yeast, worm, 

fly and human 

Four species MS No - ~25,000 

LymPHOS MS-based p-sites for primary human 

T cells 

Human MS No ~200 342 

PhosphoGRID Experimentally verified in vivo p-sites 

in S. cerevisiae 

Yeast SL, MS Yes 1,776 6,440 

PhosPhAt 3.0 MS-based p-sites in Arabidopsis Arabidopsis MS, PS Yes 5,170 12,457 

P3DB 1.1 MS-based p-sites in plants Plants MS No 6,382 14,670 

ProMEX MS-derived p-sites for A. thaliana, C. 

reinhardii, M. truncatula, and S. 

meliloti 

Plants and Bacte-

ria 

MS No 1,367 4,226 

PlantsP MS-based p-sites for Arabidopsis 

thaliana plasma membrane proteins 

Arabidopsis MS No - ~300 

Swiss-Prot knowledge based  A catalog of proteins information General SL, OS Yes 11,510 36,195 

dbPTM 2.0e Integration of known PTMs from 

other databases and prediction of 

PTMs 

General TO, PS No - 22,363 

PhosphoPOINT Human kinase interactome and phos-

phoprotein database 

Human TO, SL No 4,195 15,738 

NetworKIN 1.0 Human phosphorylation-modulated 

interaction networks 

Human TO, FA, CI No 3,978 20,224 

Phospho3D 3D structures of p-sites in Phos-

pho.ELM 

Mostly in verte-

brates 

TO, FA Yes 1,219 2,726 

PepCyber :P~Pep 1.2 Phospho-binding domain-mediated 

protein interactions 

Human SL Yes 1,471 - 
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(Table 2) contd…. 

Numbers 
Databases Main Propose Species Method

a
 Ref.

 b
 

Sub. Sites 

PhosphoVariant Genetic variations that change phos-

phorylation state 

Human TO, FA Yes - - 

PhosSNP 1.0 Genetic polymorphisms that Influence 

protein phosphorylation status 

Human TO, FA No 17,614 - 

 

Table 2. Predictors for non-Specific or Organism-Specific Phosphorylation Sites. a. Training Data Set, the Experimentally Verified 

p-sites were Taken as Positive Training Data set. b. Specificity, for General Propose or Organism-Specific p-sites Predic-

tion. c. Method, the Computational Methods Used for Training. ANN, Artificial Neural Network; SPR, Simple Pattern 

Recognition; SVMs, Support Vector Machines; PSSM, Position-Specific Scoring Matrix; DI, disorder information. d. 

PTMP-UI, Whether the Predictor Follows a Unified User Interface (UI). For Example, The Input of PhosPhat 3.0 Only Al-

lows AGI Codes from The Arabidopsis Information Resource (TAIR). e. N/A, Not Available 

PTMP-UI
d
 

Predictors Training Data Set
a
 Specificity

b
 Method

c
 

IN O1 O2 O3 

NetPhos 2.0 584 pS, 108 pT and 210 pY sites General ANN Y Y Y Y 

CRP N/Ae General SPR Y N N N 

PHOSIDA 4,731 pS, 664 pT and 107 pY sites General SVMs Y Y N N 

DISPHOS 1.3 1,079 pS, 666 pT and 375 pY sites Species-specific PSSM, DI Y Y Y Y 

NetPhosYeast 1.0 953 pS and 192 pT sites in yeast Yeast ANN Y Y Y Y 

NetPhosBac 1.0 103 pS and 37 pT in bacterial proteins Bacteria ANN Y Y Y Y 

PhosPhAt 3.0 802 pS, 1,818pT and 676pY sites Arabidopsis SVMs N N Y Y 

 

Arabidopsis, PhosPhAt 3.0 was implemented in the SVMs 
algorithm as the first Arabidopsis-specific predictor [51, 52] 
(Table 2).  

 The input and output of predictors are greatly useful for 
experimental researchers. Users usually regarded the compli-
cated computational algorithms as “black boxes”. However, 
with a simple but straightforward user interface (UI), ex-
perimentalists can easily input their data, click on the “sub-
mit” button, and obtained the prediction results. Previously, 
we collected 32 PTM sites prediction tools and proposed 
some general rules for a unified UI [69]. The rationale post-
translational modification site prediction user interface 
(PTMP-UI) is presented below: 

1) Input (IN): protein primary sequences (usually in 
FASTA format) 

2) Output (O1): position of the predicted PTM site 

3) Output (O2): flanking peptide of the predicted PTM site 

4) Output (O3): evaluation score or probability of the pre-
dicted PTM site 

 Most of predictors for PTMs followed this basic ration-
ale, while some of them also provided auxiliary features 
[69]. In this work, we tested the UIs of all online available 
tools. The detailed results were shown in Table 2.  

PREDICTION OF KINASE-SPECIFIC PHOSPHORY-

LATION SITES OR PHOSPHO-BINDING MOTIFS 

 Currently, prediction of kinase-specific p-sites has 
emerged to be more useful for experimental researchers, 
since there are too many PKs in eukaryotes and each PK 
might recognize a distinct pattern for modification. As the 
demand for carrying out large-scale predictions and discov-
ering potential phosphorylation networks evolves, accurate 
and robust prediction of kinase-specific p-sites has become 
necessary and challenging [36, 37]. 

 The methods of kinase-specific predictions could be clas-
sified into two categories: simple motif-based or complex 
algorithm-based. A phosphorylation motif could be repre-
sented with a pattern or a regular expression. Thus, the sim-
ple motif-based or simple pattern recognition (SPR) ap-
proach is straightforward and convenient: match or not [70, 
71]. The PROSITE is the first integrated database to collect 
protein patterns, while its associated tool of ScanProsite 
could be used to search simple motifs, also including 3 
kinase-specific phosphorylation motifs [70, 71] (Table 3). 
With a similar approach, Puntervoll et al. developed a com-
prehensive resource of ELM to scan potential functional lin-
ear motifs in proteins [72] (Table 3). Also, the context in-
formation was added to improve the prediction accuracy [72] 
(Table 3). In 2006, Balla et al. collected 312 unique protein
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Table 3. Predictors for Kinase-Specific Phosphorylation Sites and Phospho-Binding Motifs. a. Training Data set, The Experimen-

tally Verified p-sites were Taken as Positive Training Data Set. b. Num. of PKs, the Number of PKs That the Predictors 

Could Predict for Their Specific p-sites. c. Method, the Computational Methods Used for Training. SPR, Simple Pattern 

Recognition; PSSM, Position-Specific Scoring Matrix; CI, Context Information; SA, Statistical Analysis; ANN, Artificial 

Neural Network; SVMs, Support Vector Machines; GPS, Group-Based Prediction System; BDT, Bayesian Decision The-

ory; HMM, Hidden Markov Model; LOR, Log-Odds Ratio; KSB, Simplified Kinase-Substrate Binding Model; CRF, 

Conditional Random Fields; WVM, Weighted Voting; SP, Sequence Patterns; EI, Evolutionary Information. d. PTMP-UI, 

Whether The Predictor Follows a Unified User Interface (UI). e. N/A, Not Available 

PTMP-UI
d
 

Predictors Training Data Set
a
 Num. of PKs

b
 Method

c
 

IN O1 O2 O3 

ScanProsite N/Ae 3 SPR, PSSM Y Y Y N 

ELM N/A 12 SPR, CI Y N Y N 

Minimotif Miner 2.0 N/A N/A SPR, SA Y Y N Y 

PhosphoMotif Finder N/A ~90 SPR Y Y Y N 

PREDIKIN 1.0 N/A N/A SPR Y N N N 

Predikin & PredikinDB 2.0 2,335 S/T/Y PK-specific p-sites N/A PSSM Y Y Y Y 

ScanSite 2.0 N/A ~27 PSSM Y Y Y Y 

NetPhosK 1.0 N/A 17 ANN Y Y N Y 

PredPhospho 1.0 ~830-1071 S/T PK-specific p-sites 4 PK groups & 4 PK 

families 

SVMs Y Y N N 

PredPhospho 2.0 N/A 7 PK groups & 18 PK 

families 

SVMs Y Y N Y 

GPS 1.10 ~2,060 S/T/Y PK-specific p-sites 216 GPS Y Y Y Y 

GPS 2.0 3,161 S/T/Y PK-specific p-sites 408 GPS Y Y Y Y 

PPSP 1.0 ~2,060 S/T/Y PK-specific p-sites ~70 PK groups BDT Y Y Y Y 

KinasePhos 1.0 1,163 S/T/Y PK-specific p-sites 18 PK groups HMM Y Y Y Y 

KinasePhos 2.0 3,751 S/T/Y PK-specific p-sites 58 PK groups SVMs Y Y Y Y 

PhoScan ~400 S/T PK-specific p-sites ~48 PK families LOR Y Y Y Y 

pkaPS 239 S/T PKA-specific p-sites 1 KSB Y Y Y Y 

CRPhos 0.8 2,510 S/T/Y PK-specific p-sites 34 CRF N/A 

AutoMotif 2.0 N/A ~36 SVMs Y Y Y Y 

SMALI N/A N/A PSSM Y Y Y Y 

MetaPredPS N/A N/A WV N/A 

NetPhorest 4,169 S/T/Y PK-specific p-sites 179 PSSM, ANN Y Y Y Y 

PostMod 3,258 S/T/Y PK-specific p-sites 48 PK groups SP, EI Y Y Y Y 

 

motifs (with 73 phosphorylation motifs) from scientific lit-
erature, and constructed a motif-based tool of Minimotif 
Miner [73, 74] (Table 3). A simple statistical enrichment 
ratio was calculated as the predicted score. With a similar 
strategy, Amanchy et al. designed the PhosphoMotif Finder 
and collected 324 p-sites motifs or phospho-binding motifs 
[75] (Table 3). Also, based on the SPR strategy, PREDIKIN 
1.0 was established to predict kinase-specific p-sites [76].  

 Although motif-based approaches were widely used, pre-
diction of kinase-specific sites with complex algorithms was 
also popular for its higher accuracy. And the threshold val-
ues could be set in a more flexible manner. For example, the 
Predikin & PredikinDB 2.0 were implemented in a PSSM 
approach (Table 3) [77, 78]. In 2004, the Scansite 2.0 was 
implemented in the PSSM algorithm to predict ~27 PK-
specific p-sites and several phospho-binding motifs [79] 
(Table 3). Also, Blom et al. used an ANN algorithm and 
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desig-ned NetPhosK 1.0, which could predict kinase-specific 
p-sites for ~17 PKs [27] (Table 3). Furthermore, the Pred-
Phospho 1.0 was implemented in SVMs algorithm to predict 
for 4 PK groups and 4 PK families [80] (Table 3). And its 
enhanced version of PredPhospho 2.0 could predict for 7 PK 
groups and 18 PK families (Table 3) [61]. We also contrib-
uted great efforts on kinase-specific predictions. In 2004, we 
developed GPS 1.0 & 1.10 (Group-based Phosphorylation 
Scoring) algorithm with two hypotheses [81, 82] (Table 3). 
First, we hypothesized that similar peptides might bear simi-
lar biological properties. Also, we assumed that one PK 
could recognize more than one motif/pattern in substrates 
[81, 82]. GPS 1.10 could predict kinase-specific phosphory-
lation sites for 71 PK groups, including 216 unique PKs [81, 
82] (Table 3). Recently, we greatly improved the GPS algo-
rithm and released GPS 2.0 (Group-based Prediction Sys-
tem) software, which could predict for 408 PKs in human 
[83] (Table 3). We also used the Bayesian Decision Theory 
(BDT) method to develop PPSP 1.0 [84] (Table 3). And the 
prediction power of PPSP 1.0 was comparable with our GPS 
1.10 [84]. Other researchers also constructed several predic-
tors, including KinasePhos 1.0 (implemented in Hidden 
Markov Model, HMM) [85], KinasePhos 2.0 (SVMs) [86], 
PhoScan (Log-odds ratio, LOR) [87], pkaPS (Simplified 
kinase-substrate binding model, KSB) [88], CRPhos (Condi-
tional random fields, CRF) [89], AutoMotif (SVMs) [90, 
91], and PostMod (Sequence patterns and evolutionary in-
formation) [92], etc. (Table 3). Based on the results of ori-
ented peptide array libraries, SAMLI was constructed to pre-
dict SH2-binding peptides (usually phospho-peptides) in 
proteins [93, 94] (Table 3). Furthermore, multiple complex 
algorithms could be combined together to improve the pre-
diction power. For example, a recent software of MetaPred-
PS, designed a weighted voting (WV) meta-predicting ap-
proach to integrate the prediction results from other pro-
grams [95] (Table 3). Finally, simple motif-based methods 
could also be combined with complex algorithm-based 
strategies. For example, NetPhorest used the PSSMs, known 
patterns and machine-learning algorithms (e.g., ANN) to-
gether to predict kinase-specific phosphorylation sites or 
phospho-binding motifs [96] (Table 3). Again, the input and 
output formats of these predictors were carefully evaluated 
(Table 3).  

 In this work, we critically evaluated and compared the 
prediction performances of different PK-specific predictors, 
including our GPS 2.0 [83], ScanSite 2.0 [79], KinasePhos 
1.0 & 2.0 [85, 86], NetPhosK 1.0 [27], pkaPS [88], PPSP 1.0 
[84], PhoScan [87] and NetPhorest [96]. Usually, the predic-
tion performances could be evaluated by self-consistency 
validation, leave-one-out validation and n-fold cross-valida-
tion [83]. Since the leave-one-out validations and n-fold 
cross-validations for other tools were not available, we fo-
cused on the comparison of the self-consistency perform-
ances. From Phospho.ELM 6.0 database, we prepared a test-
ing data set for 4 well-studied PKs, including experimentally 
verified p-sites for PKA, ATM, CDC2, and Src. As previ-
ously described [81-84], we took the experimentally verified 
phosphorylation sites as the positive data (+), while all other 
residues (S/T or Y) in the same substrates were regarded as 
the negative data (-).The data statistics were shown in Table 4 
(also available at: http://gps.biocuckoo.org/links.php). 

Among the data with positive hits by a predictor, the real 
positives are defined as true positives (TP), while the others 
are defined as false positives (FP). Among the data with 
negative predictions by the predictor, the real positives are 
defined as false negatives (FN), while the others are defined 
as true negatives (TN). Then four standard performance 
measurements of accuracy (Ac), sensitivity (Sn), specificity 
(Sp) and Mathew correlation coefficient (MCC) were defined 
as below [81-84]: 

Table 4. A Testing Data Set for PKA, ATM, CDC2 and Src. 

The Data Set Contains Experimentally Verified PK-

Specific Phosphorylation Sites from Phospho.ELM 

6.0 Database. The Data Set is Freely Available at: 

http://gps.biocuckoo.org /links.php 

P-Sites 
PKs Substrates 

Positive Negative 

PKA 210 337 19,091 

ATM 28 55 3,712 

CDC2 65 130 6,362 

Src 86 136 1,758 

FNTP

TP
Sn

+
= , 

FPTN

TN
Sp

+
= , 

FNTNFPTP

TNTP
Ac

+++

+
= , and 

)()()()(

)()(

FNTNFPTPFPTNFNTP
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 For GPS 2.0 [83], the AGC/PKA, Atypical/PIKK/ATM, 
CMGC/CDK/CDC2/CDC2 and TK/Src/Src were selected 
for PK-specific p-sites prediction. For ScanSite 2.0 [79], the 
“Protein kinase A”, “ATM kinase”, “Cdc2 kinase” and “Src 
kinase” were chosen. For KinasePhos 1.0 [85], the “cAMP-
dependent protein kinase (PKA)”, “Ataxia telangiectasia 
mutated kinase (ATM)”, Cyclin-dependent kinase (CDK) 
and “Tyrosine kinase Src” were selected. For kinasePhos 2.0 
[86], the “cAMP-dependent protein kinase(PKA)”, “Ataxia 
telangiectasia mutated(ATM)”, “Cell division cycle protein 
kinase(CDC2)” and “Tyrosine kinase Src(Src)” were chosen. 
For NetPhosK 1.0 [27], the PKA, ATM, Cdc2, and Src were 
selected. For pkaPS [88], only PKA was used. For PPSP 1.0 
[84], the PKA, ATM, CDKs, and SRC were adopted. For 
PhoScan [87], the PKA, ATM_ATR_group and CDK were 
used. Finally, for NetPhorest [96], the PKA_group, ATM-
_ATR_group, CDK1 and Src_group were chosen. Both the 
positive and negative data sets were submitted on these on-
line services directly. Then the Ac, Sn, Sp and MCC values 
were calculated for each predictor. Due to the page limita-
tion, the results of Sn and Sp were not shown in Table 5. And 
the full performances are available in Table S1 in Supple-
mental Data. For comparison, we fixed the Sp value of GPS 
2.0 to be nearly equal with other tools and compared the Sn 
values (Table 5). Generally, GPS 2.0 exhibits better per-
formances than other softwares (Table 5). In our previous
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Table 5. Comparison of Several PK-Specific Predictors, Including Scansite, KinasePhos 1.0 & 2.0, NetPhosK 1.0, pkaPS, PPSP 1.0, 

PhoScan, NetPhorest, and GPS 2.0. We Fixed the Sp Value of GPS 2.0 to be Similar with That Used in Other Tools to 

Compare the Sn Values. The Performances with Better Values than Those from GPS 2.0 are Bold. The Detailed Results 

are Available in Table S1 in Supplementary Data 

PKA ATM CDC2 Src 
Comparison Cut-Off 

Sn Sp Sn Sp Sn Sp Sn Sp 

low 69.14% 95.02% 54.55% 93.67% 73.08% 95.13% 28.68% 95.28% 

medium 42.43% 99.17% 27.27% 98.57% 29.23% 99.26% 11.76% 99.37% ScanSite 2.0 

high 16.91% 99.91% 18.18% 99.70% 8.46% 99.84% 3.68% 99.94% 

90% 85.16% 90.64% 89.09% 83.86% 72.31% 86.37% 47.06% 89.93% 

95% 80.12% 94.50% 87.27% 89.76% 63.08% 92.69% 38.24% 93.91% KinasePhos 1.0 

100% 58.46% 98.42% 81.82% 96.04% 48.46% 97.99% 25.00% 97.84% 

Kinasephos 2.0 Default 55.19% 89.20% 89.09% 38.12% 13.08% 99.72% 86.76% 55.97% 

NetPhosK 1.0 Default 77.74% 91.18% 85.45% 97.60% 16.92% 87.79% 33.09% 95.39% 

pkaPS Default 89.61% 90.81%       

High Sn 97.92% 28.39% 98.18% 42.19% 93.85% 35.15% 94.85% 22.18% 

Balance 87.54% 90.58% 96.36% 91.38% 83.08% 94.11% 74.26% 74.86% PPSP 1.0 

High Sp 1.78% 99.99% 21.82% 100% 10.00% 99.80% 7.35% 99.89% 

high 40.95% 99.50% 45.45% 99.16% 33.85% 99.06%   
PhoScan 

low 73.89% 91.49% 89.09% 94.77% 67.69% 94.73%   

NetPhorest Default 94.96% 76.29% 100% 90.68% 86.92% 90.88% 54.41% 84.19% 

 83.09% 95.04% 100% 94.03% 82.31% 95.16% 56.62% 95.32% 

 49.26% 99.17% 72.73% 98.62% 26.15% 99.27% 15.44% 99.41% 

 8.61% 99.91% 32.73% 99.70% 10.77% 99.84% 3.68% 99.94% 

 89.91% 90.75% / / 89.23% 86.52% 71.32% 89.93% 

 84.27% 94.58% / / 86.92% 92.74% 63.97% 93.97% 

 64.39% 98.43% 98.18% 96.04% 46.92% 98.00% 38.24% 98.01% 

 91.69% 89.25% / / 11.54% 99.73% 96.32% 56.21% 

 89.61% 91.26% 87.27% 97.61% 89.23% 87.90% 53.68% 95.43% 

 89.91% 90.91%       

 100% 28.75% / / 100% 35.40% 99.26% 23.36% 

 89.91% 90.63% / / 86.15% 94.11% 83.09% 75.00% 

 0.59% 99.99% 16.36% 100% 10.77% 99.83% 4.41% 99.88% 

 40.65% 99.50% 63.64% 99.16% 31.54% 99.06%   

 89.61% 91.57% 100% 94.79% 85.38% 94.73%   

GPS 2.0 

  97.63% 76.31% 100% 94.03% 87.69% 90.96% 75.00% 84.31% 

 

work [83], we observed when an extremely high Sp value 
was chosen, a predictor will only generate a few number of 
positive hits. In GPS 2.0, we improved the algorithm to en-
hance the prediction performances around Sp of 90% [83]. In 

this regard, when an extremely high Sp value was selected, 
e.g., Sp >99%, the GPS 2.0 was not better than other tools, 
including ScanSite 2.0 (PKA, CDC2, and Src), KinasePhos 
2.0 (CDC2), PPSP 1.0 (PKA, ATM, and Src), and PhoScan 
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(PKA and CDC2) (Table 5). The KinasePhos 1.0 with the Sn 
and Sp of 48.46% and 97.99% was also better than GPS 2.0 
(Sn & Sp of 46.92% &98.00%) (Table 5). However, the pre-
diction performances of different predictors could still be 
comparative.  

 Additionally, we used the GPS 2.0 as a typical tool to 
compare the simple motif-based and complex algorithm-
based approaches, with the same testing data set. The ex-
perimentally verified p-sites motifs for PKA, ATM, CDC2 
and Src were taken from PhosphoMotif Finder website [75]. 
The prediction performances for several typical p-sites mo-
tifs were shown in Table 6. More detailed information was 
shown in Table S2 in Supplemental Data. Obviously, the 
GPS 2.0 generated better performances, when the Sp value 
was not greatly high (Sp < 99%) (Table 6).  

MISCELLANEOUS TOOLS 

 Besides phosphorylation databases and prediction of p-
sites, there were several other related researches. Recently, 
discovery of informative phosphorylation motifs from large-

scale phosphoproteomic data attracted much attention. 
Schwartz et al. developed a novel software of Motif-X with 
an iterative statistical algorithm, to discover potentially in-
formative p-sites motifs from high-throughput MS-derived 
phosphoproteomic data [97] (Table 7). Then they developed 
an associated tool of Scan-X, which used phosphorylation 
motifs detected from Motif-X to scan potential p-sites in 
proteins [98] (Table 7). Also, Ritz et al. construct a similar 
tool of MoDL for discovery of p-sites motifs, with a Motif 
Description Length (MoDL) algorithm [99] (Table 7). Inter-
estingly, Wang et al. modified the classical BLAST algo-
rithm to design the PhosphoBlast, which could detect poten-
tial p-sites by sequence similarity [100] (Table 7). Literature 
mining of phosphorylation information is useful for data 
integration and collection. However, there was only one re-
lated software of RLIMS-P reported [101, 102] (Table 7). 
For other tools, Lachmann et al. developed KEA (kinase 
enrichment analysis) to elucidate kinases-substrates relation-
ship [103] (Table 7). Finally, we also developed DOG 1.0, 
which could visualize protein functional domain and modifi-
cation sites in a user-defined manner [104] (Table 7).  

Table 6. Comparison of Simple Motif-Based Approach to Complex Algorithm-Based Algorithm. GPS 2.0 was Chosen as An Ex-

ample of Complex Algorithm-Based Predictor. The Experimentally Discovered p-sites Motifs were Taken from the Phos-

phoMotif Finder Website. Again, We Fixed the Sp Value of GPS 2.0 to be Similar with SPR Performance to Compare the 

Sn Values. The Performances with Better Values Than Those From GPS 2.0 are Bold. The Full Comparisons are Avail-

able in Table S2 in Supplementary Data 

SPR Performance GPS 2.0 Performance 
Simple Motifs 

Ac Sn Sp MCC Ac Sn Sp MCC 

PKA  

RRXpS[M/I/L/V/F/Y] 98.41% 11.31% 99.96% 0.3022  98.24% 1.48% 99.96% 0.0728  

RXpS 96.11% 50.30% 96.92% 0.3189  96.53% 75.07% 96.92% 0.4627  

RXXpS 95.83% 54.17% 96.57% 0.3267  96.22% 76.26% 96.58% 0.4511  

[R/K]X[pS/pT] 89.69% 74.70% 89.96% 0.2685  90.05% 91.10% 90.03% 0.3346  

KXX[pS/pT] 93.04% 13.99% 94.44% 0.0475  94.29% 85.16% 94.45% 0.4102  

ATM  

[P/L/I/M]X[L/I/D/E]pSQ 98.59% 18.52% 99.78% 0.3154  98.72% 27.27% 99.78% 0.4166  

LpSQE 98.57% 3.70% 99.97% 0.1549  98.77% 18.18% 99.97% 0.4035  

pSQ 96.08% 92.59% 96.13% 0.4809  96.20% 98.18% 96.17% 0.5109  

CDC2  

[R/K]pSP[R/P][R/K/H] 98.00% 0.78% 100% 0.0872  97.95% 0.77% 99.95% 0.0407  

[pS/pT]PX[R/K] 98.16% 32.56% 99.51% 0.4244  97.88% 19.23% 99.51% 0.2838  

HHH[R/K]pSPR[R/K]R 97.99% 0 100% N/A N/A 

SRC  

pYMXM 92.69% 2.22% 99.88% 0.1054  92.90% 5.15% 99.88% 0.1886  

EEEIpY[G/E]EFD 92.64% 0 100% N/A N/A 

pY[A/G/S/T/D/E] 63.28% 60.00% 63.55% 0.1266  65.78% 89.71% 63.88% 0.2858  
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Table 7. Miscellaneous Tools that Were Not Classified. a. 

Method. IS, Iterative Statistical Approach; SPR, 

Simple Pattern Recognition; MoDL, Motif Descrip-

tion Length; TM, Text-Mining; SA, Statistical 

Analysis 

Tools Main Propose Method
a
 

Motif-X 
Identification of phosphorylation motifs from 

large-scale data 
IS 

Scan-X 
Prediction of potential p-sites in yeast, fly, 

mouse and human 
SPR 

MoDL 
Discovery of phosphorylation motifs from 

phosphorylated peptides 
MoDL 

Phos-

phoBlast 

For searching homologus phosphorylated 

peptides 
BLAST 

RLIMS-P 
Extract protein phosphorylation information 

from the abstracts 
TM 

KEA Prediction of kinase-substrate association SA 

DOG 1.0 
Visualization of protein functional domain 

and PTM sites 
JAVA 

DISCUSSION 

 In this review, we briefly summarize the current progress 
of most aspects of computational resources for protein phos-
phorylation. The computational studies without web links 
were not introduced, because it’s not convenient to be used 
by experimental researchers. Totally, there are 16 phos-
phorylation databases and 36 computational programs listed. 
The web links and references for these resources are avail-
able in Table S3 in Supplemental Data. We believe that more 
and more related studies will be carried out, and more and 
more databases and softwares will be constructed and re-
leased in the near future. For further computational studies, 
we give several personal perspectives on the computational 
phosphorylation: 

 (1) Integration of experimentally verified phosphoryla-
tion information. As we described above, there were more 
than ten phosphorylation databases constructed (Table 1). 
However, no one contains the full data set. And the data 
qualities are heterogeneous in different databases. In this 
regard, we expected that some efforts should be carried out 
to integrate phosphorylation information from different re-
sources, with careful curation.  

 (2) Standardization of the input and output format. Cur-
rently, the input and output formats of existed databases and 
predictors are still not unified, which might be difficult for 
users. For example, Phospho.ELM database allows the pro-
tein/gene name, public database accession, or primary pro-
tein sequences as input [24, 29, 40, 41], while only pro-
tein/gene names are permitted in PhosphoSitePlus [42]. A 
unified input and output rationale should be established for 
users. And most of predictors have already followed a uni-
fied user interface (PTMP-UI) [69]. In addition, we suggest 
that the data storage in phosphorylation databases could also 

be organized in a unified format, which might be useful for 
data sharing, distribution and integration.  

 (3) Improvement of existed approaches and development 
of novel methods. Although several simple motif-based or 
complex algorithm-based algorithms were adopted for p-
sites prediction, the performance could still be improved. 
The existed approaches could be improved, e.g., GPS 2.0 
[83]; Different existed algorithms could be combined togeth-
er, e.g., MetaPredPS [95] and NetPhorest [96]; New algo-
rithms could be developed, e.g., CRPhos 0.8 [89]. We and 
other researchers are still working on development of more 
efficient and accurate algorithms.  

 (4) Combining protein 3D structures and evolutionary 
information. Most of researchers believed that protein 3D 
information will be useful for p-sites prediction [26-28, 33]. 
However, the 3D structure information of proteins is still 
very limited compared to the huge number of proteins in the 
public databases. And structural computational is time-
consuming and slow-speed. The evolutionary information 
was also proposed to be useful for performance improve-
ment, e.g., NetPhosK 1.0 [27]. However, this additional pro-
cedure will also slow down the prediction process. How to 
include 3D and evolutionary information without slowing 
down the prediction speed is still a great challenge. 

 (5) Construction of more organism-specific predictors. 
Prediction of p-sites in a species- specific mode will be more 
accurate than the non-specific manner, since different organ-
isms might have different patterns in substrates for PKs 
modification. Currently, there were four organism-specific 
predictors developed (Table 2). And we believe that more 
and more species-specific predictors will be released in the 
near future.  

 (6) Analysis of large-scale phosphoproteomic data. Re-
cently, large-scale phosphoproteomic studies with high-
throughput MS-based techniques have been widely carried 
out to generate a large number of p-sites. Usually, the cog-
nate PKs for these p-sites were not known. In this regard, 
annotation of PK information for large-scale phosphopro-
teomic data will be helpful for further experimental consid-
eration. Previously, we directly used GPS 2.0 to annotate PK 
information for ~12,000 non-specific p-sites in Phos-
pho.ELM database [83]. Also, discovery of potential p-sites 
motifs from phosphoproteomic data is also helpful for pre-
diction, e.g., Motif-X [97] and MoDL [99].  

 (7) Re-construction of phosphorylation pathways and 
networks. Systematically re-construction of potential phos-
phorylation pathways and networks will be useful for further 
experimental design. For example, Linding et al. developed a 
NetworKIN database and successfully discovered a highly 
potential phosphorylation network in H. sapiens [36, 37] 
(Table 1). Re-construction of phosphorylation networks be-
yond human will be a great challenge for computational re-
searchers.  

 (8) From prediction to drug design. Aberrances of phos-
phorylation system are frequently involved in various dis-
eases and cancers [105]. The deleterious variations, e.g., 
non-synonymous single nucleotide polymorphisms (SNPs) 
and somatic mutations in kinases or substrates could change 
their original functions and properties [62, 105]. Currently, it 
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was estimated that ~20% of all potential drug targets are PKs 
[105]. In this regard, further computational studies on regula-
tory roles of phosphorylation will be helpful for drug design. 
For example, structural modeling analyses revealed the in-
teracting mechanisms of CDK5 and its activators [106, 107]. 
If genetic variations occur at residues located in binding in-
terface, they might disrupt the kinase-regulator interaction 
and rewire signaling pathways. Analogously, structural mod-
eling of kinase-substrate interaction should also be carried 
out in the near future.  

 For other personal suggestions, we propose that the on-
line services or downloadable packages should be prepared 
at least for academic usages. And either a phosphorylation 
database or a predictor should be designed in an easy-to-use 
manner. Finally, the version number should be added, if the 
database or software will be updated later. Again, we believe 
that computational studies together with experimental verifi-
cations will propel the phosphorylation research into a new 
phase.  

ACKNOWLWDGEMENTS 

 The authors are grateful for the three anonymous review-
ers, whose suggestions have greatly improved the presenta-
tion of this manuscript. We thank Dr. Martin Miller (New 
York, USA) for his helpful suggestions. We are also grateful 
that Dr. Lorenzo A. Pinna (Padua, Italy) kindly sent us a 
hard-copy reprint of his article. This work was supported by 
grants from the National Basic Research Program (973 pro-
ject) (2006CB933300, 2007CB947401, 2010CB945400), 
National Natural Science Foundation of China (90919001, 
30700138, 30830036, 30900835), Chinese Academy of Sci-
ences (KSCX2-YW-R-139, INFO-115-C01-SDB4-36), and 
National Science Foundation for Post-doctoral Scientists 
(20080430100). 

CONFLICT OF INTEREST 

 The authors have declared no conflict of interest. 

SUPPLEMENTARY MATERIAL 

 Supplementary material is available on the publishers 
Web site along with the published article. 

REFERENCES 

[1] Chou, K.C. A vectorized sequence-coupling model for predicting 
HIV protease cleavage sites in proteins. J. Biol. Chem., 1993, 

268(23), 16938-16948. 
[2] Chou, K.C. Prediction of human immunodeficiency virus protease 

cleavage sites in proteins. Anal. Biochem., 1996, 233(1), 1-14. 
[3] Shen, H.B.; Chou, K.C. HIVcleave: a web-server for predicting 

human immunodeficiency virus protease cleavage sites in proteins. 
Anal. Biochem., 2008, 375(2), 388-390. 

[4] Chou, K.C.; Shen, H.B. Signal-CF: a subsite-coupled and window-
fusing approach for predicting signal peptides. Biochem. Biophys. 

Res. Commun., 2007, 357(3), 633-640. 
[5] Chou, K.C.; Shen, H.B. Recent progress in protein subcellular 

location prediction. Anal. Biochem., 2007, 370(1), 1-16. 
[6] Chou, K.C.; Shen, H.B. Cell-PLoc: a package of Web servers for 

predicting subcellular localization of proteins in various organisms. 
Nat. Protoc., 2008, 3(2), 153-162. 

[7] Chou, K.C.; Shen, H.B. A new method for predicting the subcellu-
lar localization of eukaryotic proteins with both single and multiple 

sites: Euk-mPLoc 2.0. PLoS One, 2010, 5(4), e9931. 

[8] He, Z.; Zhang, J.; Shi, X.H.; Hu, L.L.; Kong, X.; Cai, Y.D.; Chou, 

K.C. Predicting drug-target interaction networks based on func-
tional groups and biological features. PLoS One, 2010, 5(3), e9603. 

[9] Chou, K.C.; Shen, H.B. ProtIdent: a web server for identifying 
proteases and their types by fusing functional domain and sequen-

tial evolution information. Biochem. Biophys. Res. Commun., 2008, 
376(2), 321-325. 

[10] Chou, K.C.; Shen, H.B. MemType-2L: a web server for predicting 
membrane proteins and their types by incorporating evolution in-

formation through Pse-PSSM. Biochem. Biophys. Res. Commun., 
2007, 360(2), 339-345. 

[11] Shen, H.B.; Chou, K.C. EzyPred: a top-down approach for predict-
ing enzyme functional classes and subclasses. Biochem. Biophys. 

Res. Commun., 2007, 364(1), 53-59. 
[12] Chou, K.C. A sequence-coupled vector-projection model for pre-

dicting the specificity of GalNAc-transferase. Protein Sci., 1995, 
4(7), 1365-1383. 

[13] Xiao, X.; Wang, P.; Chou, K.C. GPCR-CA: A cellular automaton 
image approach for predicting G-protein-coupled receptor func-

tional classes. J. Comput. Chem., 2009, 30(9), 1414-1423. 
[14] Shen, H.B.; Chou, K.C. QuatIdent: a web server for identifying 

protein quaternary structural attribute by fusing functional domain 
and sequential evolution information. J. Proteome Res., 2009, 8(3), 

1577-1584. 
[15] Xiao, X.; Wang, P.; Chou, K.C. Predicting the quaternary structure 

attribute of a protein by hybridizing functional domain composition 
and pseudo amino acid composition. J. Appl. Cryst., 2009, 42, 169-

173. 
[16] Shen, H.B.; Song, J.N.; Chou, K.C. Prediction of protein folding 

rates from primary sequence by fusing multiple sequential features. 
J. Biomed. Sci. Eng., 2009, 2, 136-143. 

[17] Chou, K.C.; Shen, H.B. REVIEW: Recent advances in developing 
web-servers for predicting protein attributes. Nat. Sci., 2009, 2, 63-

92. 
[18] Chou, K.C. Structural bioinformatics and its impact to biomedical 

science. Curr. Med. Chem., 2004, 11(16), 2105-2134. 
[19] Chou, K.C. Modelling extracellular domains of GABA-A recep-

tors: subtypes 1, 2, 3, and 5. Biochem. Biophys. Res. Commun., 
2004, 316(3), 636-642. 

[20] Chou, K.C. Molecular therapeutic target for type-2 diabetes. J. 
Proteome Res., 2004, 3(6), 1284-1288. 

[21] Caenepeel, S.; Charydczak, G.; Sudarsanam, S.; Hunter, T.; Man-
ning, G. The mouse kinome: discovery and comparative genomics 

of all mouse protein kinases. Proc. Natl. Acad. Sci. USA, 2004, 
101(32), 11707-11712. 

[22] Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, 
S. The protein kinase complement of the human genome. Science, 

2002, 298(5600), 1912-1934. 
[23] Vlad, F.; Turk, B.E.; Peynot, P.; Leung, J.; Merlot, S. A versatile 

strategy to define the phosphorylation preferences of plant protein 
kinases and screen for putative substrates. Plant J., 2008, 55(1), 

104-117. 
[24] Kreegipuu, A.; Blom, N.; Brunak, S. PhosphoBase, a database of 

phosphorylation sites: release 2.0. Nucleic Acids Res., 1999, 27(1), 
237-239. 

[25] Kreegipuu, A.; Blom, N.; Brunak, S.; Jarv, J. Statistical analysis of 
protein kinase specificity determinants. FEBS lett., 1998, 430(1-2), 

45-50. 
[26] Pinna, L.A.; Ruzzene, M. How do protein kinases recognize their 

substrates? Biochim. Biophys. Acta, 1996, 1314(3), 191-225. 
[27] Blom, N.; Sicheritz-Ponten, T.; Gupta, R.; Gammeltoft, S.; Brunak, 

S. Prediction of post-translational glycosylation and phosphoryla-
tion of proteins from the amino acid sequence. Proteomics, 2004, 

4(6), 1633-1649. 
[28] Kobe, B.; Kampmann, T.; Forwood, J.K.; Listwan, P.; Brinkworth, 

R.I. Substrate specificity of protein kinases and computational pre-
diction of substrates. Biochim. Biophys. Acta, 2005, 1754(1-2), 

200-209. 
[29] Blom, N.; Kreegipuu, A.; Brunak, S. PhosphoBase: a database of 

phosphorylation sites. Nucleic Acids Res., 1998, 26(1), 382-386. 
[30] Diella, F.; Haslam, N.; Chica, C.; Budd, A.; Michael, S.; Brown, 

N.P.; Trave, G.; Gibson, T.J. Understanding eukaryotic linear mo-
tifs and their role in cell signaling and regulation. Front. Biosci., 

2008, 13, 6580-6603. 



Phosphorylation-Related Resources Current Protein and Peptide Science, 2010, Vol. 11, No. 6    495 

[31] Hjerrild, M.; Gammeltoft, S. Phosphoproteomics toolbox: compu-

tational biology, protein chemistry and mass spectrometry. FEBS 
Lett., 2006, 580(20), 4764-4770. 

[32] Miller, M.L.; Blom, N. Kinase-specific prediction of protein phos-
phorylation sites. Methods Mol. Biol., 2009, 527, 299-310. 

[33] Ubersax, J.A.; Ferrell, J.E., Jr. Mechanisms of specificity in protein 
phosphorylation. Nat. Rev. Mol. Cell. Biol., 2007, 8(7), 530-541. 

[34] Zhu, G.; Liu, Y.; Shaw, S. Protein kinase specificity. A strategic 
collaboration between kinase peptide specificity and substrate re-

cruitment. Cell Cycle, 2005, 4(1), 52-56. 
[35] Yaffe, M.B.; Leparc, G.G.; Lai, J.; Obata, T.; Volinia, S.; Cantley, 

L.C. A motif-based profile scanning approach for genome-wide 
prediction of signaling pathways. Nat. Biotechnol., 2001, 19(4), 

348-353. 
[36] Linding, R.; Jensen, L.J.; Ostheimer, G.J., van Vugt, M.A.; Jorgen-

sen, C.; Miron, I.M.; Diella, F.; Colwill, K.; Taylor, L.; Elder, K.; 
Metalnikov, P.; Nguyen, V.; Pasculescu, A.; Jin, J.; Park, J.G.; 

Samson, L.D.; Woodgett, J.R.; Russell, R.B.; Bork, P.; Yaffe, 
M.B.; Pawson, T. Systematic discovery of in vivo phosphorylation 

networks. Cell, 2007, 129(7), 1415-1426. 
[37] Linding, R.; Jensen, L.J.; Pasculescu, A.; Olhovsky, M.; Colwill, 

K.; Bork, P.; Yaffe, M.B.; Pawson, T. NetworKIN: a resource for 
exploring cellular phosphorylation networks. Nucleic Acids Res., 

2008, 36(Database issue), D695-699. 
[38] Biondi, R.M.; Nebreda, A.R. Signalling specificity of Ser/Thr 

protein kinases through docking-site-mediated interactions. Bio-
chem. J., 2003, 372(Pt 1), 1-13. 

[39] Holland, P.M.; Cooper, J.A. Protein modification: docking sites for 
kinases. Curr. Biol., 1999, 9(9), R329-331. 

[40] Diella, F.; Cameron, S.; Gemund, C.; Linding, R.; Via, A.; Kuster, 
B.; Sicheritz-Ponten, T.; Blom, N.; Gibson, T.J. Phospho.ELM: a 

database of experimentally verified phosphorylation sites in eu-
karyotic proteins. BMC Bioinformatics, 2004, 5, 79. 

[41] Diella, F.; Gould, C.M.; Chica, C.; Via, A.; Gibson, T.J. Phos-
pho.ELM: a database of phosphorylation sites--update 2008.  

Nucleic Acids Res., 2008, 36(Database issue), D240-244. 
[42] Hornbeck, P.V., Chabra, I.; Kornhauser, J.M., Skrzypek, E.; Zhang, 

B. PhosphoSite: A bioinformatics resource dedicated to physiologi-
cal protein phosphorylation. Proteomics, 2004, 4(6), 1551-1561. 

[43] Wurgler-Murphy, S.M.; King, D.M.; Kennelly, P.J. The Phos-
phorylation Site Database: A guide to the serine-, threonine-, 

and/or tyrosine-phosphorylated proteins in prokaryotic organisms. 
Proteomics, 2004, 4(6), 1562-1570. 

[44] Keshava Prasad, T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; 
Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.; 

Venugopal, A.; Balakrishnan, L.; Marimuthu, A.; Banerjee, S.; 
Somanathan, D.S.; Sebastian, A.; Rani, S.; Ray, S.; Harrys Kishore, 

C.J.; Kanth, S.; Ahmed, M.; Kashyap, M.K.; Mohmood, R.; 
Ramachandra, Y.L.; Krishna, V.; Rahiman, B.A.; Mohan, S.; Ran-

ganathan, P.; Ramabadran, S.; Chaerkady, R.; Pandey, A. Human 
Protein Reference Database--2009 update. Nucleic Acids Res., 

2009, 37(Database issue), D767-772. 
[45] Li, H.; Xing, X.; Ding, G.; Li, Q.; Wang, C.; Xie, L.; Zeng, R.; Li, 

Y. SysPTM: a systematic resource for proteomic research on post-
translational modifications. Mol. Cell. Proteomics, 2009, 8(8), 

1839-1849. 
[46] Gnad, F.; Ren, S.; Cox, J.; Olsen, J.V.; Macek, B.; Oroshi, M.; 

Mann, M. PHOSIDA (phosphorylation site database): manage-
ment, structural and evolutionary investigation, and prediction of 

phosphosites. Genome Biol., 2007, 8(11), R250. 
[47] Gnad, F.; de Godoy, L.M.; Cox, J.; Neuhauser, N.; Ren, S.; Olsen, 

J.V.; Mann, M. High-accuracy identification and bioinformatic 
analysis of in vivo protein phosphorylation sites in yeast. Pro-

teomics, 2009, 9(20), 4642-4652. 
[48] Bodenmiller, B.; Campbell, D.; Gerrits, B.; Lam, H.; Jovanovic, 

M.; Picotti, P.; Schlapbach, R.; Aebersold, R. PhosphoPep--a data-
base of protein phosphorylation sites in model organisms. Nat. Bio-

technol., 2008, 26(12), 1339-1340. 
[49] Ovelleiro, D.; Carrascal, M.; Casas, V.; Abian, J. LymPHOS: de-

sign of a phosphosite database of primary human T cells. Pro-
teomics, 2009, 9(14), 3741-3751. 

[50] Stark, C.; Su, T.C.; Breitkreutz, A.; Lourenco, P.; Dahabieh, M.; 
Breitkreutz, B.J.; Tyers, M.; Sadowski, I. PhosphoGRID: a data-

base of experimentally verified in vivo protein phosphorylation 
sites from the budding yeast Saccharomyces cerevisiae. Database 

(Oxford), 2010, 2010, bap026. 

[51] Heazlewood, J.L.; Durek, P.; Hummel, J.; Selbig, J.; Weckwerth, 

W.; Walther, D.; Schulze, W.X. PhosPhAt: a database of phos-
phorylation sites in Arabidopsis thaliana and a plant-specific phos-

phorylation site predictor. Nucleic Acids Res., 2008, 36(Database 
issue), D1015-1021. 

[52] Durek, P.; Schmidt, R.; Heazlewood, J.L.; Jones, A.; MacLean, D.; 
Nagel, A.; Kersten, B.; Schulze, W.X. PhosPhAt: the Arabidopsis 

thaliana phosphorylation site database. An update. Nucleic Acids 
Res., 2010, 38(Database issue), D828-834. 

[53] Gao, J.; Agrawal, G.K.; Thelen, J.J.; Xu, D. P3DB: a plant protein 
phosphorylation database. Nucleic Acids Res., 2009, 37(Database 

issue), D960-962. 
[54] Hummel, J.; Niemann, M.; Wienkoop, S.; Schulze, W.; Steinhau-

ser, D.; Selbig, J.; Walther, D.; Weckwerth, W. ProMEX: a mass 
spectral reference database for proteins and protein phosphoryla-

tion sites. BMC Bioinformatics, 2007, 8, 216. 
[55] Nuhse, T.S.; Stensballe, A.; Jensen, O.N.; Peck, S.C. Phosphopro-

teomics of the Arabidopsis plasma membrane and a new phos-
phorylation site database. Plant Cell, 2004, 16(9), 2394-2405. 

[56] Farriol-Mathis, N.; Garavelli, J.S.; Boeckmann, B.; Duvaud, S.; 
Gasteiger, E.; Gateau, A.; Veuthey, A.L.; Bairoch, A. Annotation 

of post-translational modifications in the Swiss-Prot knowledge 
base. Proteomics, 2004, 4(6), 1537-1550. 

[57] Lee, T.Y.; Huang, H.D.; Hung, J.H.; Huang, H.Y.; Yang, Y.S., 
Wang, T.H. dbPTM: an information repository of protein post-

translational modification. Nucleic Acids Res., 2006, 34(Database 
issue), D622-627. 

[58] Yang, C.Y.; Chang, C.H.; Yu, Y.L.; Lin, T.C.; Lee, S.A.; Yen, 
C.C.; Yang, J.M.; Lai, J.M.; Hong, Y.R.; Tseng, T.L. Chao, K.M.; 

Huang, C.Y. PhosphoPOINT: a comprehensive human kinase in-
teractome and phospho-protein database. Bioinformatics, 2008, 

24(16), i14-20. 
[59] Zanzoni, A.; Ausiello, G.; Via, A.; Gherardini, P.F.; Helmer-

Citterich, M. Phospho3D: a database of three-dimensional struc-
tures of protein phosphorylation sites. Nucleic Acids Res., 2007, 

35(Database issue), D229-231. 
[60] Gong, W.; Zhou, D.; Ren, Y.; Wang, Y.; Zuo, Z.; Shen, Y.; Xiao, 

F.; Zhu, Q.; Hong, A.; Zhou, X.; Gao, X.; Li, T. PepCyber:P~PEP: 
a database of human protein protein interactions mediated by phos-

phoprotein-binding domains. Nucleic Acids Res., 2008, 
36(Database issue), D679-683. 

[61] Ryu, G.M.; Song, P.; Kim, K.W.; Oh, K.S.; Park, K.J.; Kim, J.H. 
Genome-wide analysis to predict protein sequence variations that 

change phosphorylation sites or their corresponding kinases.  
Nucleic Acids Res., 2009, 37(4), 1297-1307. 

[62] Ren, J.; Jiang, C.; Gao, X.; Liu, Z.; Yuan, Z.; Jin, C.; Wen, L.; 
Zhang, Z.; Xue, Y.; Yao, X. PhosSNP for systematic analysis of 

genetic polymorphisms that influence protein phosphorylation. 
Mol. Cell. Proteomics, 2010, 9(4), 623-634. 

[63] Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and structure-
based prediction of eukaryotic protein phosphorylation sites. J. 

Mol. Biol., 1999, 294(5), 1351-1362. 
[64] MacDonald, J.A.; Mackey, A.J.; Pearson, W.R.; Haystead, T.A. A 

strategy for the rapid identification of phosphorylation sites in the 
phosphoproteome. Mol. Cell. Proteomics, 2002, 1(4), 314-322. 

[65] Mackey, A.J.; Haystead, T.A.; Pearson, W.R. CRP: Cleavage of 
radiolabeled phosphoproteins. Nucleic Acids Res., 2003, 31(13), 

3859-3861. 
[66] Iakoucheva, L.M.; Radivojac, P.; Brown, C.J.; O'Connor, T.R.; 

Sikes, J.G.; Obradovic, Z.; Dunker, A.K. The importance of intrin-
sic disorder for protein phosphorylation. Nucleic Acids Res., 2004, 

32(3), 1037-1049. 
[67] Ingrell, C.R.; Miller, M.L.; Jensen, O.N.; Blom, N. NetPhosYeast: 

prediction of protein phosphorylation sites in yeast. Bioinformatics, 
2007, 23(7), 895-897. 

[68] Miller, M.L.; Soufi, B.; Jers, C.; Blom, N.; Macek, B.; Mijakovic, 
I. NetPhosBac - a predictor for Ser/Thr phosphorylation sites in 

bacterial proteins. Proteomics, 2009, 9(1), 116-125. 
[69] Zhou, F.; Xue, Y.; Yao, X.; Xu, Y. A general user interface for 

prediction servers of proteins' post-translational modification sites. 
Nat. Protoc., 2006, 1(3), 1318-1321. 

[70] de Castro, E.; Sigrist, C.J.; Gattiker, A.; Bulliard, V.; Langendijk-
Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite: 

detection of PROSITE signature matches and ProRule-associated 
functional and structural residues in proteins. Nucleic Acids Res., 

2006, 34(Web Server issue), W362-365. 



496    Current Protein and Peptide Science, 2010, Vol. 11, No. 6 Xue et al. 

[71] Hulo, N.; Bairoch, A.; Bulliard, V.; Cerutti, L.; Cuche, B.A.; de 

Castro, E.; Lachaize, C.; Langendijk-Genevaux, P.S.; Sigrist, C.J. 
The 20 years of PROSITE. Nucleic Acids Res., 2008, 36(Database 

issue), D245-249. 
[72] Puntervoll, P.; Linding, R.; Gemund, C.; Chabanis-Davidson, S.; 

Mattingsdal, M.; Cameron, S.; Martin, D.M.; Ausiello, G.; Bran-
netti, B.; Costantini, A.; Ferre, F.; Maselli, V.; Via, A.; Cesareni, 

G.; Diella, F.; Superti-Furga, G.; Wyrwicz, L.; Ramu, C.; McGui-
gan, C.; Gudavalli, R.; Letunic, I.; Bork, P.; Rychlewski, L.; 

Kuster, B.; Helmer-Citterich, M.; Hunter, W.N.; Aasland, R.; Gib-
son, T.J. ELM server: A new resource for investigating short func-

tional sites in modular eukaryotic proteins. Nucleic Acids Res., 
2003, 31(13), 3625-3630. 

[73] Balla, S.; Thapar, V.; Verma, S.; Luong, T.; Faghri, T.; Huang, 
C.H.; Rajasekaran, S.; del Campo, J.J.; Shinn, J.H.; Mohler, W.A.; 

Maciejewski, M.W.; Gryk, M.R.; Piccirillo, B., Schiller, S.R.; 
Schiller, M.R. Minimotif Miner: a tool for investigating protein 

function. Nat. Methods, 2006, 3(3), 175-177. 
[74] Rajasekaran, S.; Balla, S.; Gradie, P.; Gryk, M.R.; Kadaveru, K.; 

Kundeti, V.; Maciejewski, M.W.; Mi, T.; Rubino, N.; Vyas, J.; 
Schiller, M.R. Minimotif miner 2nd release: a database and web 

system for motif search. Nucleic Acids Res., 2009, 37(Database is-
sue), D185-190. 

[75] Amanchy, R.; Periaswamy, B.; Mathivanan, S.; Reddy, R.; Tatti-
kota, S.G.; Pandey, A. A curated compendium of phosphorylation 

motifs. Nat. Biotechnol., 2007, 25(3), 285-286. 
[76] Brinkworth, R.I.; Breinl, R.A.; Kobe, B. Structural basis and pre-

diction of substrate specificity in protein serine/threonine kinases. 
Proc. Natl. Acad. Sci. U. S. A., 2003, 100(1), 74-79. 

[77] Saunders, N.F.; Brinkworth, R.I.; Huber, T.; Kemp, B.E.; Kobe, B. 
Predikin and PredikinDB: a computational framework for the pre-

diction of protein kinase peptide specificity and an associated data-
base of phosphorylation sites. BMC Bioinformatics, 2008, 9, 245. 

[78] Saunders, N.F.; Kobe, B. The Predikin webserver: improved pre-
diction of protein kinase peptide specificity using structural infor-

mation. Nucleic Acids Res., 2008, 36(Web Server issue), W286-
290. 

[79] Obenauer, J.C.; Cantley, L.C.; Yaffe, M.B. Scansite 2.0: Proteome-
wide prediction of cell signaling interactions using short sequence 

motifs. Nucleic Acids Res., 2003, 31(13), 3635-3641. 
[80] Kim, J.H.; Lee, J.; Oh, B.; Kimm, K.; Koh, I. Prediction of phos-

phorylation sites using SVMs. Bioinformatics, 2004, 20(17), 3179-
3184. 

[81] Xue, Y.; Zhou, F.; Zhu, M.; Ahmed, K.; Chen, G.; Yao, X. GPS: a 
comprehensive www server for phosphorylation sites prediction. 

Nucleic Acids Res., 2005, 33(Web Server issue), W184-187. 
[82] Zhou, F.F.; Xue, Y.; Chen, G.L.; Yao, X. GPS: a novel group-

based phosphorylation predicting and scoring method. Biochem. 
Biophys. Res. Commun., 2004, 325(4), 1443-1448. 

[83] Xue, Y.; Ren, J.; Gao, X.; Jin, C.; Wen, L.; Yao, X. GPS 2.0, a tool 
to predict kinase-specific phosphorylation sites in hierarchy. Mol. 

Cell. Proteomics, 2008, 7(9), 1598-1608. 
[84] Xue, Y.; Li, A.; Wang, L.; Feng, H.; Yao, X. PPSP: prediction of 

PK-specific phosphorylation site with Bayesian decision theory. 
BMC Bioinformatics, 2006, 7, 163. 

[85] Huang, H.D.; Lee, T.Y.; Tzeng, S.W.; Horng, J.T. KinasePhos: a 
web tool for identifying protein kinase-specific phosphorylation 

sites. Nucleic Acids Res., 2005, 33(Web Server issue), W226-229. 
[86] Wong, Y.H.; Lee, T.Y.; Liang, H.K.; Huang, C.M.; Wang, T.Y.; 

Yang, Y.H.; Chu, C.H.; Huang H.D.; Ko, M.T.; Hwang, J.K. 
KinasePhos 2.0: a web server for identifying protein kinase-

specific phosphorylation sites based on sequences and coupling 
patterns. Nucleic Acids Res., 2007, 35(Web Server issue), W588-

594. 
[87] Li, T.; Li, F.; Zhang, X. Prediction of kinase-specific phosphoryla-

tion sites with sequence features by a log-odds ratio approach. Pro-
teins, 2008, 70(2), 404-414. 

[88] Neuberger, G.; Schneider, G.; Eisenhaber, F. pkaPS: prediction of 
protein kinase A phosphorylation sites with the simplified kinase-

substrate binding model. Biol. Direct, 2007, 2, 1. 

[89] Dang, T.H.; Van Leemput, K.; Verschoren, A.; Laukens, K. Predic-

tion of kinase-specific phosphorylation sites using conditional ran-
dom fields. Bioinformatics, 2008, 24(24), 2857-2864. 

[90] Plewczynski, D.; Tkacz, A.; Wyrwicz, L.S.; Rychlewski, L. Auto-
Motif server: prediction of single residue post-translational modifi-

cations in proteins. Bioinformatics, 2005, 21(10), 2525-2527. 
[91] Plewczynski, D.; Tkacz A., Wyrwicz L. S., Rychlewski L., Ginal-

ski K. AutoMotif Server for prediction of phosphorylation sites in 
proteins using support vector machine: 2007 update. J. Mol. 

Model., 2008, 14(1), 69-76. 
[92] Jung, I.; Matsuyama, A.; Yoshida, M.; Kim, D. PostMod: sequence 

based prediction of kinase-specific phosphorylation sites with indi-
rect relationship. BMC Bioinformatics, 2010, 11 (Suppl 1), S10. 

[93] Huang, H.; Li, L.; Wu, C.; Schibli, D.; Colwill, K.; Ma, S.; Li, C.; 
Roy, P.; Ho, K.; Songyang, Z.; Pawson, T.; Gao, Y.; Li, S.S. Defin-

ing the specificity space of the human SRC homology 2 domain. 
Mol. Cell. Proteomics, 2008, 7(4), 768-784. 

[94] Li, L.; Wu, C.; Huang, H.; Zhang, K.; Gan, J.; Li, S.S. Prediction of 
phosphotyrosine signaling networks using a scoring matrix-assisted 

ligand identification approach. Nucleic Acids Res., 2008, 36(10), 
3263-3273. 

[95] Wan, J.; Kang, S.; Tang, C.; Yan, J.; Ren, Y.; Liu, J.; Gao, X.; 
Banerjee, A.; Ellis, L.B.; Li, T. Meta-prediction of phosphorylation 

sites with weighted voting and restricted grid search parameter se-
lection. Nucleic Acids Res., 2008, 36(4), e22. 

[96] Miller, M.L.; Jensen, L.J.; Diella, F.; Jorgensen, C.; Tinti, M.; Li, 
L.; Hsiung, M.; Parker, S.A.; Bordeaux, J.; Sicheritz-Ponten, T.; 

Olhovsky, M.; Pasculescu, A.; Alexander, J.; Knapp, S.; Blom, N.; 
Bork, P.; Li, S.; Cesareni, G.; Pawson, T.; Turk, B.E.; Yaffe, M.B.; 

Brunak, S.; Linding, R. Linear motif atlas for phosphorylation-
dependent signaling. Sci. Signal., 2008, 1(35), ra2. 

[97] Schwartz, D.; Gygi, S.P. An iterative statistical approach to the 
identification of protein phosphorylation motifs from large-scale 

data sets. Nat. Biotechnol., 2005, 23(11), 1391-1398. 
[98] Schwartz, D.; Chou, M.F.; Church, G.M. Predicting protein post-

translational modifications using meta-analysis of proteome scale 
data sets. Mol. Cell. Proteomics, 2009, 8(2), 365-379. 

[99] Ritz, A.; Shakhnarovich, G.; Salomon, A.R.; Raphael, B.J. Discov-
ery of phosphorylation motif mixtures in phosphoproteomics data. 

Bioinformatics, 2009, 25(1), 14-21. 
[100] Wang, Y.; Klemke, R.L. PhosphoBlast, a computational tool for 

comparing phosphoprotein signatures among large datasets. Mol. 
Cell. Proteomics, 2008, 7(1), 145-162. 

[101] Hu, Z.Z.; Narayanaswamy, M.; Ravikumar, K.E.; Vijay-Shanker, 
K.; Wu, C.H. Literature mining and database annotation of protein 

phosphorylation using a rule-based system. Bioinformatics, 2005, 
21(11), 2759-2765. 

[102] Yuan, X.; Hu, Z.Z.; Wu, H.T.; Torii, M.; Narayanaswamy, M.; 
Ravikumar, K.E.; Vijay-Shanker, K.; Wu, C.H. An online literature 

mining tool for protein phosphorylation. Bioinformatics, 2006, 
22(13), 1668-1669. 

[103] Lachmann, A.; Ma'ayan, A. KEA: kinase enrichment analysis. 
Bioinformatics, 2009, 25(5), 684-686. 

[104] Ren, J.; Wen, L.; Gao, X.; Jin, C.; Xue, Y.; Yao, X. DOG 1.0: 
illustrator of protein domain structures. Cell Res., 2009, 19(2), 271-

273. 
[105] Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mu-

tations in human disease: interpreting genotype-phenotype relation-
ships. Nat. Rev. Genet., 2010, 11(1), 60-74. 

[106] Chou, K.C.; Watenpaugh, K.D.; Heinrikson, R.L. A model of the 
complex between cyclin-dependent kinase 5 and the activation do-

main of neuronal Cdk5 activator. Biochem. Biophys. Res. Com-
mun., 1999, 259(2), 420-428. 

[107] Zhang, J.; Luan, C.H.; Chou, K.C.; Johnson, G.V. Identification of 
the N-terminal functional domains of Cdk5 by molecular truncation 

and computer modeling. Proteins, 2002, 48(3), 447-453. 
 

 

Received: December 08, 2009 Revised: May 17, 2010 Accepted: May 17, 2010 

PMID: 20491621 


