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ABSTRACT

We reported an integrated database of Compendium
of Protein Lysine Modifications (CPLM; http://cplm.
biocuckoo.org) for protein lysine modifications
(PLMs), which occur at active e-amino groups of
specific lysine residues in proteins and are critical
for orchestrating various biological processes. The
CPLM database was updated from our previously
developed database of Compendium of Protein
Lysine Acetylation (CPLA), which contained 7151
lysine acetylation sites in 3311 proteins. Here, we
manually collected experimentally identified sub-
strates and sites for 12 types of PLMs, including
acetylation, ubiquitination, sumoylation, methylation,
butyrylation, crotonylation, glycation, malonylation,
phosphoglycerylation, propionylation, succinylation
and pupylation. In total, the CPLM database con-
tained 203972 modification events on 189919
modified lysines in 45748 proteins for 122 species.
With the dataset, we totally identified 76 types of
co-occurrences of various PLMs on the same lysine
residues, and the most abundant PLM crosstalk is
between acetylation and ubiquitination. Up to 53.5%
of acetylation and 33.1% of ubiquitination events co-
occur at 10746 lysine sites. Thus, the various PLM
crosstalks suggested that a considerable proportion
of lysines were competitively and dynamically
regulated in a complicated manner. Taken together,
the CPLM database can serve as a useful resource
for further research of PLMs.

INTRODUCTION

In 1964, Allfrey et al. (1) first observed gene expression
regulation mediated by covalently introducing acetyl
and methyl groups on lysine residues in histones.
Numerous following studies in epigenetics proposed the

combinational post-translational modifications (PTMs)
of histones as ‘histone codes’, of which PTMs occurring
on lysine residues occupy an important proportion (2).
Later studies discovered lysine as a hot spot for PTMs,
while a number of protein lysine modifications (PLMs)
can occur in both histone and non-histone proteins
(3–11). For example, beyond constituting the ‘histone
code’, lysine acetylation plays a critical role in various
biological processes such as metabolism (12,13) and
autophagy (14,15), while methylation in non-histone
proteins can regulate protein stability and activity (16).
In 2004, the Nobel Prize in Chemistry was awarded to
Aaron Ciechanover, Avram Hershko and Irwin Rose for
their discovery of ubiquitin conjugation on lysine as a
mechanism that targets proteins for degradation (17).
Also, ubiquitin-like proteins such as small ubiquitin-
related modifier and prokaryotic ubiquitin-like protein
were found to modify protein lysine residues through
a conserved conjugation cascade (18,19). In addition,
protein lysines can be modified to 3-phosphoglyceryl-
lysine by the primary glycolytic intermediate 1,3-
bisphosphoglycerate (1,3-BPG) (10), whereas lysine
glycation is involved in glycolytic processes (11).
Recently, rapid progresses in proteomic technologies

greatly advanced the identification of well-characterized
PLMs (20–23) and the discovery of new PLMs (4,6–
8,10). For example, with a monoclonal antibody for
diglycine (diGly)-containing isopeptides, Kim et al. (21)
identified and quantified nearly 20 000 ubiquitination
sites. Also, Udeshi et al. (22) refined a preparation pro-
cedure and used anti-diGly antibodies to quantify �20 000
ubiquitination sites. In 2012, Lundby et al. (23) quantified
�15 000 acetylation sites from 16 rat tissues and system-
atically analyzed the tissue-specific lysine acetylation pro-
files. In particular, with the state-of-the-art proteomic
techniques, Dr. Yingming Zhao’s group has identified
a number of new PLMs such as butyrylation (4),
propionylation (4), malonylation (6), crotonylation (7)
and succinylation (8). Because the numbers of PLMs
and modified lysine residues have been greatly expanded,
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an integrated resource for the community is urgently
needed. Although several public databases such as
UniProt (24), HPRD (25), SysPTM (26) and dbPTM
(27) contained information for PLMs, only a limited pro-
portion of the identified substrates and sites were covered,
and the newly discovered PLMs were not considered.
Previously, we developed the Compendium of Protein

Lysine Acetylation (CPLA) database to maintain the
identified lysine acetylation information (28). In this
work, we greatly improved the CPLA database by extend-
ing the types of PLMs and developed the database of
Compendium of Protein Lysine Modifications (CPLM).
From scientific literature, the experimentally identified
substrates and sites for 12 types of PLMs were manually
collected. Besides acetylation, well-studied PLMs such
as ubiquitination, sumoylation, methylation and glycation
and newly discovered PLMs including butyrylation,
crotonylation, malonylation, phosphoglycerylation,
propionylation, succinylation and pupylation were
integrated into the database. Currently, CPLM database
contained 203 972 modification events on 189 919
modified lysine residues in 45 748 proteins from 122
species, and the detailed annotations were also provided.
The database can be searched or browsed in a convenient
manner. Based on the comprehensive dataset, we system-
atically analyzed the concurrences of different PLMs
at the same lysine residues. Although the number of
identified substrates and sites for different types of
PLMs varies from ten thousands to tens, each PLM
can crosstalk with at least one other PLM and the co-
occurrences of different PLMs at the same site were
particularly abundant. From 76 types of identified PLM
co-occurrences, we observed that the crosstalks among
acetylation, ubiquitination and succinylation are mostly
abundant. The intensive crosstalks among PLMs sug-
gested that at least a considerable number of lysines
were competitively and dynamically regulated by different
PLMs. Taken together, the CPLM database provided an
integrative platform for the community to access the
current processes on PLMs and generated a useful
resource for further experimental or computational con-
siderations. The CPLM database was implemented in
PHP+MySQL+JavaScript.

CONSTRUCTION AND CONTENT

As previously described (28), we searched PubMed with
keywords including ‘acetylation’, ‘ubiquitination’,
‘sumoylation’, ‘methylation’, ‘glycation’, ‘butyrylation’,
‘crotonylation’, ‘malonylation’, ‘phosphoglycerylation’,
‘propionylation’, ‘succinylation’ and ‘pupylation’ and
manually curated literature to collect the experimentally
identified PLM substrates and sites. To avoid missing
data, additional keywords such as ‘acetylated’, ‘acetyl’,
‘ubiquitinated’ and other related nomenclatures were
employed for searching more data in PubMed. All
modified lysine residues were mapped to the benchmark
sequences retrieved from the UniProt database (Release
2013_08) (24). To provide more information for the
PTMs substrates, the annotations from UniProt (24)

were integrated into the database. The primary references
for PLM substrates and sites were also provided to ensure
the quality of the database.

In total, 203 972 modification events were found to
occur on 189 919 lysine residues in 45 748 substrates for
12 types of PLMs (Supplementary Table S1). Obviously,
acetylation and ubiquitination have the most substrates;
the former contains 58 563 sites in 20 088 proteins and the
latter contains 139 950 sites in 32 429 proteins
(Supplementary Table S1). The third PLM with most sub-
strates is succinylation (8), which was discovered as a
novel PLM in 2011 and identified with 2523 sites in 897
substrates (Supplementary Table S1). The rapid progress
in the identification of succinylation is attributed to the
advancement of proteomic techniques (29). However, for
other new PLMs such as butyrylation, crotonylation,
malonylation, phosphoglycerylation and propionylation,
there were only a small number of identified substrates
that mainly focused on histones (Supplementary
Table S1). Although various PLMs were experimentally
detected in 122 species, the number of identified substrates
is usually limited for most organisms. With the ggplot2
program (30) in the R package (31), the distribution of
PLM substrates and sites from 12 major species with >200
substrates were visualized (Figure 1A and B). Clearly,
animals, especially mammals, were identified with most
substrates (Figure 1A) and sites (Figure 1B). It is worthy
to note that several types of PLMs are only exclusively
identified in distinct species. For example, ubiquitination
and sumoylation are only available in eukaryotes, while
pupylation was only discovered in actinomyces.

USAGE

The CPLM database was developed in a user-friendly
manner, while browse and search options were provided
for accessing the information. Because the proteins and
sites could be classified according to the PLM types and
species, two browse options including ‘Browse by types’
and ‘Browse by species’ were developed in the database
(Figure 2). For convenience, only 12 major species were
listed for browsing, while all the other organisms were
denoted as ‘Others’. Here, we use lysine acetylation sub-
strates from Homo sapiens as an example to present the
usage of the browse options in CPLM. In the option
of ‘Browse by types’, 12 simplified molecular structures
of ligands conjugated to lysine residues during modifica-
tion were employed to represent the 12 types of PLMs
(Figure 2A). By clicking on the ‘Acetylation’ button, a
brief introduction of protein lysine acetylation and the
protein number distribution of acetylated proteins in 12
major organisms and other species were showed
(Figure 2A). Then the acetylation substrates in
H. sapiens could be listed through clicking on the ‘Homo
sapiens’ link (Figure 2B). In the option of ‘Browse by
species’, the 12 major organisms were organized as
animals, bacteria, fungi and plants. Users could click on
the ‘H. sapiens’ button to view the protein number distri-
bution of different PLM substrates in H. sapiens
(Figure 2C), and then click on the link of ‘Acetylation’
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Figure 2. The browse options of CPLM. Two browse approaches including by PLM types and by species were provided to browse the database.
(A) By PLM types; (B) the protein list for specified PLM and selected organism; (C) by species; (D) the detailed information of human dead box
protein 39.

Figure 1. The heatmaps for the protein number distribution of different PLM types and species. The species names in red, green, blue and purple are
from animals, bacteria, fungi and plants, respectively. (A) The heatmap for the number of substrates; (B) the heatmap for the number of modified
lysine residues.
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to view the list of acetylated substrates in H. sapiens
(Figure 2B). The detailed information for any specified
protein could be accessed through the links in the list
(Figure 2D).
For convenient usage, three search options were imple-

mented for querying the database with one or multiple
keywords. For example, if users search the keyword
‘TP53’ in the ‘Gene Name’ area, the results will be
shown in a tabular format with CPLM ID, organism
and protein/gene names/aliases (Figure 3A).
Furthermore, two options including ‘Advance Search’
and ‘BLAST Search’ were developed to query the
proteins with higher accuracy. In the ‘Advance Search’
option, users can submit up to three search terms, which
could be specified in different areas and combined with
three operators of ‘and’, ‘or’ and ‘exclude’ to perform a
complex query (Figure 3B). The ‘BLAST search’ option
was designed to find similar proteins with a protein
sequence in the FASTA format. Through the application
of NCBI BLAST packages (32), users could submit a
protein sequence in the FASTA format to search identical
or homologous proteins (Figure 3C).

DISCUSSION

As an important molecular mechanism, PTMs greatly
expand the proteome complexity and play a critical role

in the regulation of various biological processes (20,33).
With the active e-amino groups, lysine residues were
modified by various PLMs, which constitute an important
proportion among the large number of PTM types (3).
Through modifying the substrates, PLMs regulate
various biological processes, while aberrances of lysine
modifications were associated with diseases and cancers
(18,34–36). Recent development of proteomic techniques
greatly advances the identification of PLM substrates
and the discovery of new types of PLMs (3,20).
However, in contrast to other PTMs such as phosphoryl-
ation (37,38), the computational resources for PLMs are
still limited.

In this work, we updated the acetylation-associated
database of CPLA into CPLM for more types of PLMs.
Because 203 972 modification events for 12 types of PLMs
were identified on 189 919 lysine residues, it was expected
that there were a large number of co-occurrences among
different PTMs. Indeed, Weinert et al. (39) discovered that
the crosstalks between acetylation and succinylation are
extensive in both prokaryotes and eukaryotes. Also,
previous studies identified that the competition between
acetylation and ubiquitination can serve as a mechanism
to control protein stability (40) and activity (41). From the
data set, we totally identified 76 types of PLM co-
occurrences at same lysine residues, including 40 types of
pairwise crosstalks (Figure 4A) and 36 types of multiple

Figure 3. The search options. (A) The database could be queried with simple keywords input; (B) the ‘Advance Search’ allows users to submit
combination of up to three terms for searching; (C) the database could be queried with a protein sequence to find identical or homologous proteins.
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(three or more) crosstalks (Figure 4B). We observed that
the pairwise crosstalks among acetylation, ubiquitination
and succinylation are mostly abundant (Figure 4A
and Supplementary Table S2). In total, we detected
10 746, 2420 and 1094 pairwise crosstalks for
ubiquitination–acetylation, acetylation–succinylation and
ubiquitination–succinylation (Supplementary Table S2).
Although several PLMs were identified with only a few
substrates and sites, each PLM can crosstalk pairwise
with at least one other PLM by co-occurring at the same
lysines (Figure 4A and Supplementary Table S2).
Moreover, the co-occurrences with more than two PLMs
at same lysines are also abundant, and the most abundant
multiple crosstalk is among acetylation, ubiquitination
and succinylation (Figure 4B). Because succinylation is a
newly discovered PLM, the functional consequence of
crosstalks between succinylation and other PLMs is still
not clear. However, it could be anticipated that either
pairwise concurrences or multiple crosstalks among
acetylation, succinylation and ubiquitination might play
a potential role in regulating proteins. In addition, we
did not observe co-occurrence with multiple PLMs on
pupylated lysine residues (Figure 4B). As a PLM exclu-
sively occurred in actinomyces, pupylation only co-occurs
with acetylation in 50 lysine residues (Figure 4A and
Supplementary Table S2). The intensive PLM crosstalks
suggested that a substantial proportion of lysine residues

can be competitively or dynamically regulated by different
types of PLMs.
Taken together, here we updated the CPLA database,

which only maintained the information of protein lysine
acetylation, to CPLM database for an integrated resource
of various PLMs. We believed that the updated database
can provide a more useful resource for further computa-
tional or experimental studies. The CPLM database will
be routinely updated to keep pace with the research
progresses of PLMs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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